Skip to main content
Log in

Frequency-Domain Stability Conditions for Discrete-Time Switched Systems

  • Linear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider discrete-time switched systems with switching of linear time-invariant right-hand parts. The notion of a connected discrete switched system is introduced. For systems with the connectedness property, we propose necessary and sufficient frequency-domain conditions for the existence of a common quadratic Lyapunov function that provides the stability for a system under arbitrary switching. The set of connected switched systems contains discrete control systems with several time-varying nonlinearities from the finite sectors, considered in the theory of absolute stability. We consider the case of switching between three linear subsystems in more details and give an illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shorten, R., Wirth, F., Mason, O., et al., Stability Criteria for Switched and Hybrid Systems, SIAM Rev., 2007, no. 4, pp. 545–592.

    Article  MathSciNet  MATH  Google Scholar 

  2. Lin, H. and Antsaklis, P.J., Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results, IEEE Trans. Autom. Control, 2009, vol. 54, no. 2, pp. 308–322.

    Article  MathSciNet  MATH  Google Scholar 

  3. Aleksandrov, A.Yu. and Platonov, A.V., On Stability of Solutions for a Class of Nonlinear Difference Systems with Switching, Autom. Remote Control, 2016, vol. 77, no. 5, pp. 779–788.

    Article  MathSciNet  MATH  Google Scholar 

  4. Aleksandrov, A.Yu., Martynyuk, A.A., and Platonov, A.V., Dwell Time Stability Analysis for Nonlinear Switched Difference Systems, Nonlin. Dynam. Syst. Theory, 2016, vol. 16, no. 3, pp. 221–234.

    MathSciNet  MATH  Google Scholar 

  5. Fiacchini, M., Girard, A., and Jungers, M., On the Stabilizability of Discrete-Time Switched Linear Systems: Novel Conditions and Comparisons, IEEE Trans. Autom. Control, 2016, vol. 61, no. 5, pp. 1181–1193.

    Article  MathSciNet  MATH  Google Scholar 

  6. Molchanov, A.P., Lyapunov Functions for Nonlinear Discrete-Time Control Systems, Autom. Remote Control, 1987, vol. 48, no. 6, pp. 728–736.

    MATH  Google Scholar 

  7. Barabanov, N.E., On the Lyapunov Exponent of Discrete Inclusions. I, Autom. Remote Control, 1988, vol. 49, no. 2, pp. 152–157.

    MathSciNet  MATH  Google Scholar 

  8. Tsypkin, Ya.Z., On Stability in the Large of Nonlinear Impulse Automatic Systems, Dokl. Akad. Nauk SSSR, 1962, vol. 145, no. 1, pp. 52–65.

    Google Scholar 

  9. Yakubovich, V.A., Absolute Stability of Pulsed Systems with Several Nonlinear or Linear but Nonstationary Blocks. I, II, Autom. Remote Control, 1967, vol. 28, no. 9, pp. 1301–1313; 1968, vol. 28, no. 2, pp. 244–263.

    Google Scholar 

  10. Shepelyavyi, A.I., On Qualitative Study of Global Stability and Instability for a Class of Phase- Amplitude Systems, Dokl. Akad. Nauk SSSR, 1970, vol. 190, no. 5, pp. 49–56.

    Google Scholar 

  11. Shepelyavyi, A.I., Absolute Instability of Nonlinear Pulse-Amplitude Control Systems. Frequency Criteria, Autom. Remote Control, 1972, vol. 33, no. 6, pp. 929–935.

    MATH  Google Scholar 

  12. Kamenetskii, V.A., Absolute Stability of Discrete Control Systems with Nonstationary Nonlinearities, Avtom. Telemekh., 1985, no. 8, pp. 172–176.

    MathSciNet  Google Scholar 

  13. Barkin, A.I., On Absolute Stability of Discrete Systems, Autom. Remote Control, 2008, vol. 69, no. 10, pp. 1647–1652.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kamenetskiy, V.A., Frequency-Domain Stability Conditions for Hybrid Systems, Autom. Remote Control, 2017, vol. 78, no. 12, pp. 2101–2119.

    Article  MathSciNet  MATH  Google Scholar 

  15. Mason, O. and Shorten, R.S., On Common Quadratic Lyapunov Functions for Pairs of Stable Discrete-Time LTI Systems, IMA J. Appl. Math., 2004, vol. 69, pp. 271–283.

    Article  MathSciNet  MATH  Google Scholar 

  16. Barbashin, E.A., Funktsii Lyapunova (Lyapunov Functions), Moscow: Fizmatlit, 1970.

    MATH  Google Scholar 

  17. Gelig, A.X., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with Nonunique Equlibrium State), Moscow: Nauka, 1978.

    MATH  Google Scholar 

  18. Kamenetskii, V.A., Absolute Stability and Absolute Instability of Control Systems with Several Nonlinear Nonstationary Elements, Autom. Remote Control, 1983, vol. 44, no. 12, pp. 1543–1552.

    MathSciNet  MATH  Google Scholar 

  19. Evtushenko, Yu.G., Metody resheniya ekstremal’nykh zadach i ikh primenenie v sistemakh optimizatsii (Methods for Solving Extremal Problems and Their Applications in Optimization Systems), Moscow: Nauka, 1982.

    MATH  Google Scholar 

  20. Shorten, R.S. and Narendra, K.S., On Common Quadratic Lyapunov Functions for Pairs of Stable LTI Systems Whose System Matrices Are in Companion Form, IEEE Trans. Autom. Control, 2003, vol. 48, no. 4, pp. 618–621.

    Article  MathSciNet  MATH  Google Scholar 

  21. King, C. and Nathanson, M., On the Existence of a Common Quadratic Lyapunov Function for a Rank One Difference, Lin. Algebra Appl., 2006, vol. 419, no. 2–3, pp. 400–416.

    Article  MathSciNet  MATH  Google Scholar 

  22. Chaikovskii, M.M. and Kurdyukov, A.P., Algebraicheskie uravneniya Rikkati i lineinye matrichnye neravenstva dlya sistem diskretnogo vremeni (Algebraic Riccati Equations and Linear Matrix Inequalities for Discrete-Time Systems), Moscow: Inst. Probl. Upravlen. RAN, 2005.

    Google Scholar 

  23. Balandin, D.V. and Kogan, M.M., Sintez zakonov upravleniya na osnove lineinykh matrichnykh neravenstv (Synthesis of Control Laws Based on Linear Matrix Inequalities), Moscow: Fizmatlit, 2007.

    MATH  Google Scholar 

  24. Teoriya avtomaticheskogo upravleniya. Ch. I. Teoriya nelineinykh i spetsial’nykh sistem avtomaticheskogo upravleniya (Automated Control Theory. Part I. Theory of Nonlinear and Special Automated Control Systems), Voronov, A.A., Ed., Moscow: Vysshaya Shkola, 1986.

  25. Popov, V.M., Giperustoichivost’ avtomaticheskikh sistem (Hyperstability of Automated Systems), Moscow: Nauka, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kamenetskiy.

Additional information

Original Russian Text © V.A. Kamenetskiy, 2018, published in Avtomatika i Telemekhanika, 2018, No. 8, pp. 3–26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamenetskiy, V.A. Frequency-Domain Stability Conditions for Discrete-Time Switched Systems. Autom Remote Control 79, 1371–1389 (2018). https://doi.org/10.1134/S0005117918080015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918080015

Keywords

Navigation