Skip to main content
Log in

Tsypkin and Jury–Lee Criteria for Synchronization and Stability of Discrete-Time Multiagent Systems

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Dynamics of complex networked systems consisting of a large number of interconnected components (agents) has attracted considerable attention of researchers in control theory and dynamical systems. One of the most interesting questions in this area concerns the emergence of a coherent joint behavior of nodes caused by couplings between them, such as, e.g., their synchronization. We study a network where each node is a linear dynamical system of arbitrary order in discrete time, and couplings between the nodes are nonlinear and unknown but satisfy the sector inequality with known bounds. We obtain frequency-domain criteria of synchronization and stability of the network, which are generalizations of the Tsypkin criterion and the Jury–Lee criterion for discrete-time Lurie systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agaev, R.P. and Chebotarev, P.Yu., Coordination in Multiagent Systems and Laplacian Spectra of Digraphs, Autom. Remote Control, 2009, vol. 70, no. 3, pp. 469–483.

    Article  MathSciNet  MATH  Google Scholar 

  2. Shcherbakov, P.S., Formation Control: The Van Loan Scheme and Other Algorithms, Autom. Remote Control, 2011, vol. 72, no. 10, pp. 2210–2219.

    Article  MATH  Google Scholar 

  3. Proskurnikov, A.V. and Parsegov, S.E., Problem of Uniform Deployment on a Line Segment for Secondorder Agents, Autom. Remote Control, 2016, vol. 77, no. 7, pp. 1248–1258.

    Article  MathSciNet  MATH  Google Scholar 

  4. Proskurnikov, A.V. and Fradkov, A.L., Problems and Methods of Network Control, Autom. Remote Control, 2016, vol. 77, no. 10, pp. 1711–1740.

    Article  MathSciNet  MATH  Google Scholar 

  5. Problemy setevogo upravleniya (Network Control Problems), Fradkov, A.L., Ed., Moscow: IKI, 2015.

  6. Matveev, A.S. and Savkin, A.V., Estimation and Control over Communication Networks, Boston: Birkhäuser, 2009.

    MATH  Google Scholar 

  7. Andrievsky, B.R., Matveev, A.S., and Fradkov, A.S., Control and Estimation under Information Constraints: Toward a Unified Theory of Control, Computation and Communications, Autom. Remote Control, 2010, vol. 71, no. 4, pp. 572–633.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kalyaev, I.A., Gaiduk, A.R., and Kapustyan, S.G., Modeli i algoritmy kollektivnogo upravleniya v gruppakh robotov (Collective Control Models and Algorithms in Groups of Robots), Moscow: Fizmatlit, 2009.

    MATH  Google Scholar 

  9. Kurzhanskii, A.B., On a Group Control Problem with Obstacles, Tr. Inst. Mat. Mekh. UrO RAN, 2014, vol. 20, no. 3, pp. 166–179.

    Google Scholar 

  10. Gorodetskii, V.I., Self-Organization and Multiagent Systems. I, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2012, no. 2, pp. 92–120.

    MathSciNet  MATH  Google Scholar 

  11. Ren, W. and Cao, W., Distributed Coordination of Multi-Agent Networks, London: Springer-Verlag, 2011.

    Book  MATH  Google Scholar 

  12. Mirkin, B.M., Problema gruppovogo vybora (The Collective Choice Problem), Moscow: Nauka, 1974.

    MATH  Google Scholar 

  13. Opoitsev, V.I., Ravnovesie i ustoichivost’ v modelyakh kollektivnogo povedeniya (Equilibrium and Stability in Collective Behavior Models), Moscow: Nauka, 1977.

    Google Scholar 

  14. Fradkov, A.L., Kiberneticheskaya fizika (Cybernetical Physics), St. Petersburg: Nauka, 2003.

    Google Scholar 

  15. Fradkov, A.L., Horizons of Cybernetical Physics, Phil. Trans. Royal Soc. A, 2017, vol. 375, paper N20160223.

  16. Agaev, R.P. and Chebotarev, P.Yu., Convergence and Stability in Characteristic Coordination Problems, Upravlen. Bol’shimi Sist., 2010, no. 30.1, pp. 470–505.

    Google Scholar 

  17. Ren, W. and Beard, R., Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications, London: Springer-Verlag, 2008.

    Book  MATH  Google Scholar 

  18. Olfati-Saber, R., Fax, J.A., and Murray, R.M., Consensus and Cooperation in Networked Multi-Agent Systems, Proc. IEEE, 2007, vol. 95, no. 1, pp. 215–233.

    Article  MATH  Google Scholar 

  19. Amelina, N., Fradkov, A., Jiang, Yu., and Vergados, D.J., Approximate Consensus in Stochastic Networks with Application to Load Balancing, IEEE Trans. Inform. Theory, 2015, vol. 61, no. 4, pp. 1739–1752.

    Article  MathSciNet  MATH  Google Scholar 

  20. Fradkov, A.L. and Furtat, I.B., Robust Control for a Network of Electric Power Generators, Autom. Remote Control, 2013, vol. 74, no. 11, pp. 1851–862.

    Article  MathSciNet  MATH  Google Scholar 

  21. Granichin, O.N. and Khantuleva, T.A., Adapting Wing Elements (“Feathers”) of an Airplane in a Turbulent Flow with a Multiagent Protocol, Autom. Remote Control, 2017, vol. 78, no. 10, pp. 1867–1882.

    Article  MathSciNet  MATH  Google Scholar 

  22. Bullo, F., Cortes, J., and Martinez, S., Distributed Control of Robotics Networks, Princeton: Princeton Univ. Press, 2009.

    Book  MATH  Google Scholar 

  23. Hatanaka, T., Chopra, N., Fujita, M., and Spong, M.W., Passivity-Based Control and Estimation in Networked Robotics, Berlin: Springer-Verlag, 2015.

    Book  MATH  Google Scholar 

  24. Proskurnikov, A.V. and Tempo, R., A Tutorial on Modeling and Analysis of Dynamic Social Networks. Part I, Ann. Rev. Control, 2017, vol. 43, pp. 65–79.

    Article  Google Scholar 

  25. Parsegov, S.E., Proskurnikov, A.V., Tempo, R., and Friedkin, N.E., Novel Multidimensional Models of Opinion Dynamics in Social Networks, IEEE Trans. Autom. Control, 2017, vol. 62, no. 5, pp. 2270–2285.

    Article  MathSciNet  MATH  Google Scholar 

  26. Moreau, L., Stability of Multiagent Systems with Time-dependent Communication Links, IEEE Trans. Autom. Control, 2005, vol. 50, no. 2, pp. 169–182.

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, Z., Francis, B., and Maggiore, M., State Agreement for Continuous-Time Coupled Nonlinear Systems, SIAM J. Control Optim., 2007, vol. 46, no. 1, pp. 288–307.

    Article  MathSciNet  MATH  Google Scholar 

  28. Fang, L. and Antsaklis, P., Asynchronous Consensus Protocols Using Nonlinear Paracontractions Theory, IEEE Trans. Autom. Control, 2008, vol. 53, no. 10, pp. 2351–2355.

    Article  MathSciNet  MATH  Google Scholar 

  29. Proskurnikov, A.V. and Cao, M., Differential Inequalities in Multi-agent Coordination and Opinion Dynamics Modeling, Automatica, 2017, vol. 85, pp. 202–210.

    Article  MathSciNet  MATH  Google Scholar 

  30. Amelina, N.O. and Fradkov, A.L., Approximate Consensus in the Dynamic Stochastic Network with Incomplete Information and Measurement Delays, Autom. Remote Control, 2012, vol. 73, no. 11, pp. 1765–1783.

    Article  MathSciNet  MATH  Google Scholar 

  31. Proskurnikov, A.V., Average Consensus in Networks with Nonlinearly Delayed Couplings and Switching Topology, Automatica, 2013, vol. 49, no. 9, pp. 2928–2932.

    Article  MathSciNet  MATH  Google Scholar 

  32. Proskurnikov, A.V. and Shakhova, N.D., Consensus Robustness against Inner Delays, Electron. Notes Discr. Math., 2016, vol. 51, pp. 7–14.

    Article  MathSciNet  Google Scholar 

  33. Bliman, P.-A. and Ferrari-Trecate, G., Average Consensus Problems in Networks of Agents with Delayed Communications, Automatica, 2008, vol. 44, pp. 1985–1995.

    Article  MathSciNet  MATH  Google Scholar 

  34. Papachristodoulou, A., Jadbabaie, A., and Münz, U., Effects of Delay in Multi-Agent Consensus and Oscillator Synchronization, IEEE Trans. Autom. Control, 2010, vol. 55, no. 6, pp. 1471–1477.

    Article  MathSciNet  MATH  Google Scholar 

  35. Proskurnikov, A.V., Matveev, A.S., and Cao, M., Consensus and Polarization in Altafini’s Model with Bidirectional Time-varying Network Topologies, Proc. IEEE Conf. Decision Control, 2014, pp. 2112–2117.

    Google Scholar 

  36. Proskurnikov, A.V. and Cao, M., Opinion Dynamics Using Altafini’s Model with a Time-varying Directed Graph, Proc. IEEE Int. Sympos. Intelligent Control (ISIC), 2014, pp. 849–854.

    Google Scholar 

  37. Proskurnikov, A.V. and Mazo, M., Jr., Simple Synchronization Protocols for Heterogeneous Networks: beyond Passivity, IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 9426–9431.

    Article  Google Scholar 

  38. Tomashevich, S.I., Control for a System of Linear Agents Based on a High-order Adaptation Algorithm, Autom. Remote Control, 2017, vol. 78, no. 2, pp. 276–288.

    Article  MathSciNet  MATH  Google Scholar 

  39. Wieland, P., Sepulchre, R., and Allgöwer, F., An Internal Model Principle is Necessary and Sufficient for Linear Output Synchronization, Automatica, 2011, vol. 47, pp. 1068–1074.

    Article  MathSciNet  MATH  Google Scholar 

  40. Polyak, B.T. and Tsypkin, Ya.Z., Stability and Robust Stability of Uniform Systems, Autom. Remote Control, 1996, vol. 57, no. 11, pp. 1606–1617.

    MATH  Google Scholar 

  41. Li, Z., Duan, Z., Chen, G., and Huang, L., Consensus of Multiagent Systems and Synchronization of Complex Networks: a Unified Viewpoint, IEEE Trans. Circuits Syst. I, 2010, vol. 57, no. 1, pp. 213–224.

    Article  MathSciNet  Google Scholar 

  42. Zhang, H., Lewis, F.L., and Das, A., Optimal Design for Synchronization of Cooperative Systems: State Feedback, Observer and Output Feedback, IEEE Trans. Autom. Control, 2011, vol. 56, no. 8, pp. 1948–1952.

    Article  MathSciNet  MATH  Google Scholar 

  43. Fradkov, A.L. and Grigor’ev, G.K., Decentralized Adaptive Control of Synchronization of Dynamic System Networks at Bounded Disturbances, Autom. Remote Control, 2013, vol. 74, no. 5, pp. 829–844.

    Article  MathSciNet  MATH  Google Scholar 

  44. Dzhunusov, I.A. and Fradkov, A.L., Synchronization in Networks of Linear Agents with Output Feedbacks, Autom. Remote Control, 2011, vol. 72, no. 8, pp. 1615–1626.

    Article  MathSciNet  MATH  Google Scholar 

  45. Chopra, N. and Spong, M.W., On Exponential Synchronization of Kuramoto Oscillators, IEEE Trans. Autom. Control, 2009, vol. 54, no. 2, pp. 353–357.

    Article  MathSciNet  MATH  Google Scholar 

  46. Strogatz, S., From Kuramoto to Crawford: Exploring the Onset of Synchronization in Populations of Coupled Oscillators, Phys. D, 2000, no. 143, pp. 643–651.

    Article  MathSciNet  MATH  Google Scholar 

  47. Bogomolov, S.A., Strelkova, G.I., Schöll, E., and Anishchenko, V.S., Amplitude and Phase Chimeras in an Ensemble of Chaotic Oscillators, Techn. Phys. Lett., 2016, vol. 42, no. 7, pp. 765–768.

    Article  Google Scholar 

  48. Proskurnikov, A., Consensus in Switching Networks with Sectorial Nonlinear Couplings: Absolute Stability Approach, Automatica, 2013, vol. 49, no. 2, pp. 488–495.

    Article  MathSciNet  MATH  Google Scholar 

  49. Proskurnikov, A., Nonlinear Consensus Algorithms with Uncertain Couplings, Asian J. Control, 2014, vol. 16, no. 5, pp. 1277–1288.

    Article  MathSciNet  MATH  Google Scholar 

  50. Proskurnikov, A.V., Frequency-Domain Criteria for Consensus in Multiagent Systems with Nonlinear Sector-shaped Couplings, Autom. Remote Control, 2014, vol. 75, no. 11, pp. 1982–1995.

    Article  MathSciNet  MATH  Google Scholar 

  51. Proskurnikov, A.V. and Matveev, A., Popov-Type Criterion for Consensus in Nonlinearly Coupled Networks, IEEE Trans. Cybern., 2015, vol. 45, no. 8, pp. 1537–1548.

    Article  Google Scholar 

  52. Proskurnikov, A.V., Consensus in Nonlinear Stationary Networks with Identical Agents, Autom. Remote Control, 2015, vol. 76, no. 9, pp. 1551–1565.

    Article  MathSciNet  MATH  Google Scholar 

  53. Proskurnikov, A., Zhang, F., Cao, M., and Scherpen, J.M.A., A General Criterion for Synchronization of Incrementally Dissipative Nonlinearly Coupled Agents, Proc. Eur. Control Conf., 2015, pp. 581–586.

    Google Scholar 

  54. Proskurnikov, A. and Cao, M., Synchronization of Goodwin’s Oscillators under Boundedness and Nonnegativeness Constraints for Solutions, IEEE Trans. Autom. Control, 2017, vol. 62, no. 1, pp. 372–378.

    Article  MathSciNet  MATH  Google Scholar 

  55. You, K. and Xie, L., Network Topology and Communication Data Rate for Consensusability of Discrete-Time Multi-Agent Systems, IEEE Trans. Autom. Control, 2011, vol. 56, no. 10, pp. 2262–2275.

    Article  MathSciNet  MATH  Google Scholar 

  56. Tsypkin, Ya.Z., Frequency Criteria for the Absolute Stability of Nonlinear Sampled-Data Systems, Autom. Remote Control, 1964, vol. 25, no. 3, pp. 261–267.

    MathSciNet  MATH  Google Scholar 

  57. Jury, E.I. and Lee, B.W., On the Absolute Stability of Nonlinear Sampled-Data Systems, IEEE Trans. Autom. Control, 1964, vol. 9, no. 1, pp. 51–61.

    Article  MathSciNet  Google Scholar 

  58. Fiedler, M., Algebraic Connectivity of Graphs, Czech. Math. J., 1973, vol. 23, pp. 298–305.

    MathSciNet  MATH  Google Scholar 

  59. Merris, R., Laplacian Matrices of Graphs: A Survey, Linear Algebra Appl., 1994, vol. 197, pp. 143–176.

    Article  MathSciNet  MATH  Google Scholar 

  60. Tian, Y.-P. and Liu, C.-L., Consensus of Multi-Agent Systems with Diverse Input and Communication Delays, IEEE Trans. Autom. Control, 2008, vol. 53, no. 9, pp. 2122–2128.

    Article  MathSciNet  MATH  Google Scholar 

  61. Olfati-Saber, R. and Murray, R.M., Consensus Problems in Networks of Agents with Switching Topology and Time-delays, IEEE Trans. Autom. Control, 2004, vol. 49, no. 9, pp. 1520–1533.

    Article  MathSciNet  MATH  Google Scholar 

  62. Gusev, S.V. and Likhtarnikov, A.L., Kalman–Popov–Yakubovich Lemma and the S-Procedure: A Historical Essay, Autom. Remote Control, 2006, vol. 67, no. 11, pp. 1768–1810.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Proskurnikov.

Additional information

Original Russian Text © A.V. Proskurnikov, A.S. Matveev, 2018, published in Avtomatika i Telemekhanika, 2018, No. 6, pp. 119–139.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proskurnikov, A.V., Matveev, A.S. Tsypkin and Jury–Lee Criteria for Synchronization and Stability of Discrete-Time Multiagent Systems. Autom Remote Control 79, 1057–1073 (2018). https://doi.org/10.1134/S0005117918060061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918060061

Keywords

Navigation