Automation and Remote Control

, Volume 79, Issue 5, pp 897–910 | Cite as

Aeromagnetic Gradiometry and Its Application to Navigation

  • E. V. KarshakovEmail author
  • M. Yu. Tkhorenko
  • B. V. Pavlov
Control Sciences


Modern methods of airborne magnetic field measurements are described. A stochastic algorithm to compensate the deviations between the indications of an aeromagnetometer and an aeromagnetic gradiometer is considered. An integration algorithm for the inertial and correlation-extremal navigation systems is briefly described. An advantage of using magnetic field gradient measurements as navigational data is justified. The performance of the integration algorithm is illustrated by numerical simulation.


correlation-extremal navigation system aeromagnetic gradiometry magnetic compensation integrated navigation system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dzhandzhgava, G.I., Avgustov, L.I., and Soroka, A.I., Navigation in the Anomalous Gravity Field of the Earth. The Choice of the Structure and Rationale of Requirements for Navigation System Based on Existing Cartographic Features and Hardware, Aviakosm. Priborostr., 2002, no. 6, pp. 63–68.Google Scholar
  2. 2.
    Peshekhonov, V.G., Navigation System, Vestn. Ross. Akad. Nauk, 1997, vol. 67, no. 1, pp. 43–52.Google Scholar
  3. 3.
    Shcherbinin, V.V. and Shevtsova, E.V., Fragmentation of Color Photos to Generate Multiseasonal Reference Images in Aircraft Vision-Based CENS, Izv. Yuzhn. Federaln. Univ. Tekhn. Nauki, 2010, no. 3, pp. 87–92.Google Scholar
  4. 4.
    Xiaoming, Z. and Yan, Z., Analysis of Key Technologies in Geomagnetic Navigation, 7th Int. Symp. on Instrumentation and Control Technology: Measurement Theory and Systems and Aeronautical Equipment, 2008, vol. 7128, pp. 71282J-1–71282J-6.CrossRefGoogle Scholar
  5. 5.
    Baklitskii, V.K., Korrelyatsionno-ekstremal’nye metody navigatsii i navedeniya (Correlation-extremal Methods of Navigation and Guidance), Tver: Knizhnyi Klub, 2009.Google Scholar
  6. 6.
    Beloglazov, I.N., Dzhandzhgava, G.I., and Chigin, G.P., Osnovy navigatsii po geofizicheskim polyam (Fundamentals of Navigation by Geophysical Fields), Moscow: Nauka, 1985.Google Scholar
  7. 7.
    Krasovskii, A.A., Beloglazov, I.N., and Chigin, G.P., Teoriya korrelyatsionno-ekstremal’nykh navigatsionnykh sistem (Theory of Correlation-extremal Navigation Systems), Moscow: Nauka, 1979.Google Scholar
  8. 8.
    Beloglazov, I.N. and Tarasenko, V.P., Korrelyatsionno-ekstremal’nye sistemy (Correlation-Extremal Systems), Moscow: Sovetskoe Radio, 1974.Google Scholar
  9. 9.
    Bergman, N., Recursive Bayesian Estimation. Navigation and Tracking Applications, Linkoping: Linkoping Univ., 1999.Google Scholar
  10. 10.
    Dmitriev, S.P. and Shimelevich, L.I., Nelineinye zadachi obrabotki navigatsionnoi informatsii (Nonlinear Navigational Data Processing), Leningrad: TsNII Rumb, 1977.Google Scholar
  11. 11.
    Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of Nonlinear Filtering Theory in Navigational Data Processing Problems), St. Petersburg: TsNII Elektropribor, 1998.Google Scholar
  12. 12.
    Stepanov, O.A. and Toropov, A.B., Nonlinear Filtering for Map-Aided Navigation. Part I. An Overview of Algorithms, Giroskop. Navigats., 2015, vol. 90, no. 3, pp. 102–125.CrossRefGoogle Scholar
  13. 13.
    Dmitriev, S.P. and Stepanov, O.A., Multiple-alternative Filtering in Navigational Data Processing Problems, Radiotekhn., 2004, no. 7, pp. 11–17.Google Scholar
  14. 14.
    Stepanov, O.A. and Toropov, A.B., The Use of Sequential Monte Carlo Methods in the Correlation-Extremal Navigation Problem, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2010, vol. 53, no. 10, pp. 49–54.Google Scholar
  15. 15.
    Kontarovich, R.S. and Babayants, P.S., Airborne Geophysics—An Effective Tool for Exploration Tasks, Razvedka Okhrana Nedr, 2011, no. 7, pp. 3–10.Google Scholar
  16. 16.
    Volkovitskiy, A.K., Karshakov, E.V., Pavlov, B.V., and Tkhorenko, M.Yu., Airborne Physical Fields Measurements as Navigational Aids, XXIX Ostriakov’s Memorial Conf., St. Petersburg: TsNII Elekropribor, 2014, pp. 232–241.Google Scholar
  17. 17.
    Purcell, E., Electricity and Magnetism, Cambridge: Cambridge Univ. Press, 2013, 3rd ed.Google Scholar
  18. 18.
    Telford, W.M., Geldart, L.R., and Sheriff, R.E., Applied Geophysics, Cambridge: Cambridge Univ. Press, 2004.Google Scholar
  19. 19.
    Noriega, G., Aeromagnetic Compensation in Gradiometry—Performance, Model Stability, and Robustness, IEEE Geosci. Remote Sens. Lett., 2015, vol. 12, no. 1, pp. 117–121.CrossRefGoogle Scholar
  20. 20.
    Foley, C.P., Tilbrook, D.L., Leslie, K.E., et al., Geophysical Exploration Using Magnetic Gradiometry Based on HTS SQUIDs, IEEE Trans. Appl. Superconductivity, 2001, vol. 11, no. 1, pp. 1375–1378.CrossRefGoogle Scholar
  21. 21.
    Volkovitsky, A.K., Karshakov, E.V., Moilanen, E.V., and Pavlov, B.V., Integration of Magnetic Gradiometer Correlation-Extremal and Inertial Navigation Systems, Proc. 19th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg, 2012, pp. 182–184.Google Scholar
  22. 22.
    Karshakov, E.V., Pavlov, B.V., and Tkhorenko, M.Yu., Models and Structure of Airborne Devices to Measure Physical Fields, Proc. All-Russian Conf. on Control Problems, Moscow: Inst. Probl. Upravlen., 2014, pp. 7032–7043.Google Scholar
  23. 23.
    Lysenko, A.P., Theory and Methods of Magnetic Disturbance Compensation, Geofiz. Priborostr., 1960, no. 7.Google Scholar
  24. 24.
    Volkovitskii, A.K., Karshakov, E.V., and Kharichkin, M.V., System of Aeromagnetic Survey of Magnetic Field Anomalies, Datchiki Sist., 2007, no. 8, pp. 17–21.Google Scholar
  25. 25.
    Leliak, P., Identification and Evaluation of Magnetic Field Sources of Magnetic Airborne Detector Eqquipped Aircraft, IRE Trans. Aerospace Navigat. Electronics, 1961, vol. 8, pp. 95–105.CrossRefGoogle Scholar
  26. 26.
    Karshakov, E.V. and Kharichkin, M.V., A Stochastic Estimation Problem at Aeromagnetometer Deviation Compensation, Autom. Remote Control, 2008, vol. 69, no. 7, pp. 1162–1170.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Novozhilov, I.V., Fraktsionnyi analiz (Fractional Analysis), Moscow: Mosk. Gos. Univ., 1995.Google Scholar
  28. 28.
    Bolotin, Yu.V., Golovan, A.A., and Parusnikov, N.A., Uravneniya aerogravimetrii. Algoritmy i rezul’taty ispytanii (Equations of Aerogravimetry. Algorithms and Results of Tests), Moscow: Mosk. Gos. Univ., 2002.Google Scholar
  29. 29.
    Varavva, V.G., Golovan, A.A., and Parusnikov, N.A., A Stochastic Measure of Observability, in Correction in Navigation Systems and Artificial Satellites Navigation Systems, Moscow: Mosk. Gos. Univ., 1987.Google Scholar
  30. 30.
    Golovan, A.A. and Parusnikov, N.A., Mathematicheskie osnovy navigatsionnykh sistem. Chast’ 1: Matematicheskie modeli inertsial’noi navigatsii (Mathematical Foundations of Navigation Systems. Part 1: Mathematical Models of Inertial Navigation), Moscow: Mosk. Gos. Univ., 2010, 2nd ed.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Karshakov
    • 1
    Email author
  • M. Yu. Tkhorenko
    • 1
  • B. V. Pavlov
    • 1
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations