Advertisement

Automation and Remote Control

, Volume 79, Issue 5, pp 860–869 | Cite as

Analytical Complexity and Errors of Solving Control Problems for Organizational and Technical Systems

  • D. A. NovikovEmail author
Control in Social Economic Systems
  • 15 Downloads

Abstract

This paper suggests an estimation procedure for the analytical complexity and errors of solving control problems for organizational and technical systems using uniform search. It is demonstrated that, first, attempts to reduce errors cause complexity rise; second, complexity goes down as the number of levels in a control hierarchy is increased (under decomposition of control problems); and third, errors and complexity are natural restrictors for the growth of organizational hierarchies and application of complex control mechanisms as well as stimulate the choice of typical solutions (patterns).

Keywords

organizational and technical system hierarchical game uniform search analytical complexity typical solution (pattern) complexification of control mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mechanism Design and Management: Mathematical Methods for Smart Organizations, Novikov, D.A., Ed., New York: Nova Science Publishers, 2013.Google Scholar
  2. 2.
    Novikov, D.A., Theory of Control in Organizations, New York: Nova Science Publishers, 2013.Google Scholar
  3. 3.
    Vasil’ev, D.K., Zalozhnev, A.Yu., Novikov, D.A., and Tsvetkov, A.V., Tipovye resheniya v upravlenii proektami (Generic Solutions in Project Management), Moscow: Inst. Probl. Upravlen., 2003.Google Scholar
  4. 4.
    Germeier, Yu.B., Igry s neprotivopolozhnymi interesami (Games with Nonantagonistic Interests), Moscow: Nauka, 1976.Google Scholar
  5. 5.
    Gorelov, M.A., Maximal Guaranteed Result in Hierarchical Games, Upravlen. Bol’sh. Sist., 2017, no. 67, pp. 4–31.Google Scholar
  6. 6.
    Molodtsov, D.A., Ustoichivost’ printsipov optimal’nosti (Stability of Optimality Principles), Moscow: Nauka, 1987.zbMATHGoogle Scholar
  7. 7.
    Novikov, D.A., Obobshchennye resheniya zadach stimulirovaniya v aktivnykh sistemakh (Generalized Solutions of Incentive Problems in Active Systems), Moscow: Inst. Probl. Upravlen., 1998.Google Scholar
  8. 8.
    Novikov, D.A., Management of Active Systems: Stability or Efficiency, Syst. Sci., 2001, vol. 26, no. 2, pp. 85–93.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Nesterov, Yu.E., Metody vypukloi optimizatsii (Convex Optimization Methods), Moscow: Moskovsk. Tsentr Nepreryvn. Mat. Obrazov., 2010.Google Scholar
  10. 10.
    Davydov, E.G., Issledovanie operatsii (Operations Research), Moscow: Vysshaya Shkola, 1990.Google Scholar
  11. 11.
    Kalmykov, S.A., Shokin, Yu.I., and Yuldashev, Z.Kh., Metody interval’nogo analiza (Interval Analysis Methods), Novosibirsk: Nauka, 1986.zbMATHGoogle Scholar
  12. 12.
    Hansen, E. and Walster, G., Global Optimization Using Interval Analysis, New York: Marcel Dekker, 2004.zbMATHGoogle Scholar
  13. 13.
    Novikov, D.A., Setevye struktury i organizatsionnye sistemy (Network Structures and Organizational Systems), Moscow: Inst. Probl. Upravlen., 2003.Google Scholar
  14. 14.
    Fedorov, V.V., Chislennye metody maksimina (Numerical Methods of Maximin), Moscow: Fizmatlit, 1979.Google Scholar
  15. 15.
    Daskalakis, C., Goldberg, P., and Papadimitriou, C., The Complexity of Computing a Nash Equilibrium, SIAM J. Comp., 2009, no. 39(1), pp. 195–259.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mansour, Y., Computational Game Theory, Tel Aviv: Tel Aviv Univ., 2003.Google Scholar
  17. 17.
    Czumaj, A., Fasoulakis, M., and Jurdzinski, M., Multi-player Approximate Nash Equilibria, Proc. 16th Int. Conf. Autonom. Agents and Multiagent Syst. (AAMAS 2017), San Paolo, May 8–12, 2017, pp. 1511–1513.Google Scholar
  18. 18.
    Gubko, M.V., Matematicheskie modeli optimizatsii ierarkhicheskikh struktur (Mathematical Models of Optimization for Hierarchical Structures), Moscow: Lenand, 2006.Google Scholar
  19. 19.
    Mishin, S.P., Optimal’nye ierarkhii upravleniya v sotsial’no-ekonomicheskikh sistemakh (Optimal Control Hierarchies in Socioeconomic Systems), Moscow: PMSOFT, 2004.Google Scholar
  20. 20.
    Burkov, V.N., Burkova, I.V., and Popok, M.V., Dichotomous Programming Method, Upravlen. Bol’sh. Sist., 2004, no. 9, pp. 57–75.zbMATHGoogle Scholar
  21. 21.
    Novikov, D.A., Mekhanizmy funktsionirovaniya mnogourovnevykh organizatsionnykh sistem (Mechanisms of Functioning of Multilevel Organizational Systems), Moscow: Fond Problemy Upravleniya, 1999.Google Scholar
  22. 22.
    Burkov, V.N., Korgin, N.A., and Novikov, D.A., Complexification and Decomposition Problems of Control Mechanisms for Organizational and Technical Systems, Probl. Upravlen., 2016, no. 5, pp. 14–23.Google Scholar
  23. 23.
    Novikov, D., Cybernetics: From Past to Future, Heidelberg: Springer, 2016.CrossRefGoogle Scholar
  24. 24.
    Andrievsky, B.R., Matveev, A.S., and Fradkov, A.L., Control and Estimation under Information Constraints: Toward a Unified Theory of Control, Computation and Communications, Autom. Remote Control, 2010, vol. 71, no. 4, pp. 572–633.MathSciNetzbMATHGoogle Scholar
  25. 25.
    Boyd, S., Parikh, N., Chu, E., et al., Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundat. Trends Machine Learning, 2011, no. 3(1), pp. 1–122.zbMATHGoogle Scholar
  26. 26.
    Ren, W. and Yongcan, C., Distributed Coordination of Multi-agent Networks, London: Springer, 2011.CrossRefzbMATHGoogle Scholar
  27. 27.
    Rzevski, G. and Skobelev, P., Managing Complexity, London: WIT Press, 2014.Google Scholar
  28. 28.
    Shoham, Y. and Leyton-Brown, K., Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, Cambridge: Cambridge Univ. Press, 2008.CrossRefzbMATHGoogle Scholar
  29. 29.
    Algorithmic Game Theory, Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V., Eds., New York: Cambridge Univ. Press, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations