Automation and Remote Control

, Volume 79, Issue 5, pp 841–859 | Cite as

Modeling Reflexion in the Non-Linear Model of the Stakelberg Three-Agent Oligopoly for the Russian Telecommunication Market

  • M. I. Geras’kinEmail author
Control in Social Economic Systems


We consider the problem of finding equilibria in games with three agents on an oligopolic market with a linear demand function and nonlinear agent cost functions. Under strategic reflexion of the agents regarding the presence of a Stackelberg leader (leaders) of the first and second levels, we obtain expressions for information equilibria. Modeling real agent costs and demand functions of the Russian telecommunication market has allowed us to construct a set of information equilibria which we have compared with parameters of the real market and showed the presence of reflexion of the first and second ranks.


oligopoly Stackelberg leader reflexive game Nash equilibrium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wulansari, N.E., Rismayani, R., and Pramudiana, Y., Study on Structure and Performance of Telecommunication Services Industry in Indonesia, CTTE (Conf. Telecomm., Media Internet Techno-Econ.), Proc. 2015, no. 7347229.Google Scholar
  2. 2.
    Hurkens, S. and López, Á.L., The Welfare Effects of Mobile Termination Rate Regulation in Asymmetric Oligopolies: The Case of Spain, Telecomm. Policy, 2012, no. 36(5), pp. 369–381.CrossRefGoogle Scholar
  3. 3.
    Sznajd-Weron, K., Weron, R., and Włoszczowska, M., Outflow Dynamics in Modeling OligopolyMarkets: The Case of the Mobile Telecommunications Market in Poland, J. Statist. Mechan.: Theory Experiment, 2008, no. 11, p. 11018.CrossRefGoogle Scholar
  4. 4.
    Hausman, J.A. and Taylor, W.E., Telecommunication in the US: From Regulation to Competition (Almost), Rev. Indust. Organizat., 2013, no. 42(2), pp. 203–230.CrossRefGoogle Scholar
  5. 5.
    Grünwald, O., Model of Customer Buying Behavior in the CZ Mobile Telecommunication Market, Acta Polytechnica, 2012, no. 52(5), pp. 42–50.Google Scholar
  6. 6.
    Chu-Hwan, P., Analysis of Competitive Situations among Korean Mobile Carriers Using Elasticity Estimation, Far East J. Electron. Commun., 2016, no. 16(3), pp. 703–728.CrossRefGoogle Scholar
  7. 7.
    Ida, T., Beyond Mobile Number Portability: Measuring Consumer Preferences for Service Portability in Japan’s Mobile Phone Market, Appl. Econ., 2012, no. 44(26), pp. 3357–3369.CrossRefGoogle Scholar
  8. 8.
    Andini, C. and Cabral, R., How Do Mobile-voice Operators Compete? IVQR Estimates, Appl. Econ. Lett., 2013, no. 20(1), pp. 18–22.CrossRefGoogle Scholar
  9. 9.
    OECD Communications Outlook 2013. 19991460.htmGoogle Scholar
  10. 10.
    Nauka za rubezhom (Science Abroad), December 2013 (no. 27), Prospects of the Development of the Telecommunication Industry. science reviewGoogle Scholar
  11. 11.
    Mas-Collel, A., Whinston, M., and Green, J., Microecon. Theory, New York: Oxford Univ. Press, 1995.Google Scholar
  12. 12.
    Shapiro, C., Theories of Oligopoly Behavior, Discussion paper 126, Woodrow Wilson School, Princeton Univers. Press, 1987.Google Scholar
  13. 13.
    Nash, J., Non-Cooperative Games, Ann. Math., 1951, no. 54, pp. 286–295.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cournot, A., Recherches sur les principes mathématiques de la théorie des richesses, Paris: Hachette, 1838. Translated under the title Researches into the Mathematical Principles of the Theory of Wealth, London: Hafner, 1960.zbMATHGoogle Scholar
  15. 15.
    Bowley, A.L., The Mathematical Groundwork of Economics, Oxford: Oxford Univ. Press, 1924.zbMATHGoogle Scholar
  16. 16.
    von Stackelberg, H., Marktform und Gleichgewicht, Vienna: Springer, 1934. Translated under the title Market Structure and Equilibrium, Berlin: Springer, 2011, 1st ed.Google Scholar
  17. 17.
    Karmarkar, U.S. and Rajaram, K., Aggregate Production Planning for Process Industries under Oligopolistic Competition, Eur. J. Oper. Res., 2012, no. 223(3), pp. 680–689.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ledvina, A. and Sigar, R., Oligopoly Games under Asymmetric Costs and an Application to Energy Production, Math. Financ. Econ., 2012, no. 6(4), pp. 261–293.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Currarini, S. and Marini, M.A., Sequential Play and Cartel Stability in Sournot Oligopoly, Appl. Math. Sci., 2013, no. 7(1–4), pp. 197–200.MathSciNetGoogle Scholar
  20. 20.
    Vasin, A., Game-theoretic Study of Electricity Market Mechanisms, Procedia Comput. Sci., 2014, no. 31, pp. 124–132.CrossRefGoogle Scholar
  21. 21.
    Sun, F., Liu, B., Hou, F., Gui, L., and Chen, J., Cournot Equilibrium in the Mobile Virtual Network Operator Oriented Oligopoly Offloading Market, 2016 IEEE Int. Conf. Communicat., ICC 2016, 2016, no. 7511340.Google Scholar
  22. 22.
    Naimzada, A.K. and Sbragia, L., Oligopoly Games with Nonlinear Demand and Cost Functions: Two Boundedly Rational Adjustment Processes, Chaos, Solit. Fractal., 2006, no. 29(3), pp. 707–722.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Askar, S. and Alnowibet, K., Nonlinear Oligopolistic Game with Isoelastic Demand Function: Rationality and Local Monopolistic Approximation, Chaos, Solit. Fractal., 2016, no. 84, pp. 15–22.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Naimzada, A. and Tramontana, F., Two Different Routes to Complex Dynamics in an Heterogeneous Triopoly Game, J. Differ. Equat. Appl., 2015, no. 21(7), pp. 553–563.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Cavalli, F., Naimzada, A., and Tramontana, F., Nonlinear Dynamics and Global Analysis of a Geterogeneous Cournot Duopoly with a Local Monopolistic Approach Versus a Gradient Rule with Endogenous Reactivity, Commun. Nonlin. Sci. Numer. Simulat., 2015, no. 23(1–3), pp. 245–262.CrossRefzbMATHGoogle Scholar
  26. 26.
    Colacicco, R., Ten Years of General Oligopolistic Equilibrium: A Survey, J. Econ. Surv., 2015, no. 29(5), pp. 965–992.CrossRefGoogle Scholar
  27. 27.
    Jørgensen, S. and Zaccour, G., A Survey of Game-Theoretic Models of Cooperative Advertising, Eur. J. Oper. Res., 2014, no. 237(1), pp. 1–14.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ino, H. and Matsumura, T., Welfare-Improving Effect of a Small Number of Followers in a Stackelberg Model, B.E. J. Theoret. Econ., 2016, no. 16(1), pp. 243–265.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Peng, Y., Lu, Q., and Xiao Y., A Dynamic Stackelberg Duopoly Model with Different Strategies, Chaos, Solit. Fractal., 2016, no. 85, pp. 128–134.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sherali, H.D., Multiple Leader Stackelberg Model and Analysis, Oper. Res., 1984, no. 32(2), pp. 390–404.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Boyer, M. and Moreaux, M., Being a Leader or a Follower. Reflexions on the Distribution of Roles in Duopoly, Int. J. Ind. Organiz., 1987, no. (2), pp. 175–192.CrossRefGoogle Scholar
  32. 32.
    DeMiguel, V. and Xu, H., A Stochastic Multiple-leader Stackelberg Model: Analysis, Computation, and Application, Oper. Res., 2009, no. 57(5), pp. 1220–1235.MathSciNetzbMATHGoogle Scholar
  33. 33.
    Julien, L.A., On Noncooperative Oligopoly Equilibrium in the Multiple Leader–Follower Game, Eur. J. Oper. Res., 2017, no. 256(2), pp. 650–662.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Solis, C.U., Clempner, J.B., and Poznyak, A.S., Modeling Multileader–Follower Noncooperative Stackelberg Games, Cybernet. Syst., 2017, no. 47(8), pp. 650–673.CrossRefGoogle Scholar
  35. 35.
    Lefebvre, V.A., On Self-Organizing and Self-Reflective Systems and Their Studies, Proc. Conf. Problems of Studying Systems and Structures, Moscow: Akad. Nauk SSSR, 1965, pp. 61–68.Google Scholar
  36. 36.
    Lefebvre, V., Reflexive Analysis of Groups, in Computational Methods for Counterterrorism, Argamon, S. and Howard, N., Eds., Berlin: Springer, 2009, pp. 173–210.CrossRefGoogle Scholar
  37. 37.
    Lefebvre, V., Lectures on the Reflexive Games Theory, New York: Leaf & Oaks Publishers, 2010.Google Scholar
  38. 38.
    Adams-Webber, J., Some Functional Relationships Informing the Structure of Personal Constructs, J. Constructiv. Psychol., 2013, no. 26(3), pp. 202–209.CrossRefGoogle Scholar
  39. 39.
    Anderson, J., Ramirez, D., and Stephenson, D., Asymmetry in Human Cognition: Further Replication and Extension, Percept. Motor Skills, 2012, no. 114(1), pp. 185–188.CrossRefGoogle Scholar
  40. 40.
    Alaoui, L. and Penta, A., Endogenous Depth of Reasoning, Rev. Econ. Studies, 2016, no. 83(4), pp. 1297–1333.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Kneeland, T., Coordination under Lmited Depth of Reasoning, Games Econ. Behavior, 2016, no. 96, pp. 49–64.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Brocas, I., Carrillo, J.D., Wang, W., and Camerer, C.F., Imperfect Choice or Imperfect Attention? Understanding Strategic Thinking in Private Information Games, Rev. Econ. Stud., 2014, no. 81(3), pp. 944–970.MathSciNetCrossRefGoogle Scholar
  43. 43.
    Crawford, V.P., Costa-Gomes, M.A., and Iriberri, N., Structural Models of Nonequilibrium Strategic Thinking: Theory, Evidence, and Applications, J. Econ. Literat., 2013, no. 51(1), pp. 5–62.Google Scholar
  44. 44.
    Rgo, L. and Halpern, J., Generalized Solution Concepts in Games with Possibly Unaware Players, Int. J. Game Theory, 2012, no. 41, pp. 131–155.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Heifetz, A., Meier, M., and Schipper, B.C., Unawareness, Beliefs, and Speculative Trade, Games Econ. Behavior, 2013, no. 77(1), pp. 100–121.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Intriligator, M.D., Mathematical Optimization and Economic Theory, Englewood Cliffs: Prentice Hall, 1971.zbMATHGoogle Scholar
  47. 47.
    Korepanov, V.O. and Novikov, D.A., The Reflexive Partitions Method in Models of Collective Behavior and Control, Autom. Remote Control, 2012, vol. 73, no. 8, pp. 1424–1441.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Chkhartishvili, A.G., Reflexive Games: Transformation of Awareness Structure, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 1208–1216.MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Novikov, D.A. and Chkhartishvili, A.G., Mathematical Models of Informational and Strategic Reflexion: A Survey, Adv. Syst. Sci. Appl., 2014, no. 3, pp. 254–277.Google Scholar
  50. 50.
    Chkhartishvili, A.G. and Korepanov, V.O., Adding Informational Beliefs to the Players Strategic Thinking Model, IFAC-PapersOnLine, 2016, no. 49(32), pp. 19–23.MathSciNetCrossRefGoogle Scholar
  51. 51.
    Liu, Y., Gao, L., and Guan, J., Marketing Strategy of Price Competition and Product Differentiation in Duopoly Enterprises with Asymmetric Information, Int. Conf. Services Systems Services Management, Proc. of ICSSSM’05, 2005, no. 1. (1499557), pp. 665–668.Google Scholar
  52. 52.
    Gilpatric, S.M. and Li, Y., Information Value under Demand Uncertainty and Endogenous Market Leadership, Econ. Inquiry, 2015, no. 53(1), pp. 589–603.CrossRefGoogle Scholar
  53. 53.
    Geras’kin, M.I. and Chkhartishvili, A.G., Structural Modeling of Oligopoly Market under the Nonlinear Functions of Demand and Agents’ Costs, Autom. Remote Control, 2017, vol. 78, no. 2, pp. 332–348.MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Geras’kin, M.I. and Chkhartishvili, A.G., Game-TheoreticModels of an OligopolyMarket with Nonlinear Agent Cost Functions, Autom. Remote Control, 2017, vol. 78, no. 9, pp. 1631–1650.MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Bazenkov, N.I., Double Best Response Dynamics in Topology Formation Game for Ad Hoc Networks, Autom. Remote Control, 2015, vol. 76, no. 2, pp. 323–335.MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Geraskin, M.I., Game-Theoretic Analysis of Stackelberg Oligopoly with Arbitrary Rank Reflexive Behavior of Agents, Kybernetes, 2017, no. 46(6), pp. 1052–1067.CrossRefGoogle Scholar
  57. 57.
    Divulging Information: Yearly Report. reports/(accessed at 25.05.2016).Google Scholar
  58. 58.
    Results and Reports: Yearly Reports. report/(accessed at 25.05.2016).Google Scholar
  59. 59.
    Divulging Information: Yearly Report. at 25.05.2016).Google Scholar
  60. 60.
    Kennedy, P., A Guide to Econometrics, Malden: Blackwell, 2008.Google Scholar
  61. 61.
    Lyubimov, V.V. and Lashin, V.S., External Stability of a Resonance during the Descent of a Spacecraft with a Small Variable Asymmetry in the Martian atmosphere, Adv. Space Res., 2017, no. 59(6), pp. 1607–1613.CrossRefGoogle Scholar
  62. 62.
    Lyubimov, V.V., Numerical Simulation of the Resonance Effect at Re-entry of a Rigid Body with Low Inertial and Aerodynamic Asymmetries into the Atmosphere, CEUR Workshop Proc., 2015, no. 1490, pp. 198–210.Google Scholar
  63. 63.
    Novikov, D.A. and Chkhartishvili, A.G., Reflexion and Control: Mathematical Models, London: CRC Press, 2014.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Korolev Samara National Research UniversitySamaraRussia

Personalised recommendations