Advertisement

Automation and Remote Control

, Volume 79, Issue 5, pp 830–840 | Cite as

Optimal Management of Two-Stage Stochastic Production Systems

  • M. Kh. PrilutskiiEmail author
Control in Technical Systems
  • 17 Downloads

Abstract

We consider the optimal control problem for a certain class of production systems operating under uncertainty. We construct a mathematical model, give the settings of optimization control problems, and propose efficient algorithms for their solution. We also give examples of applied problems formalized within the framework of the constructed mathematical model.

Keywords

stochastic production systems two-stage systems optimal control recurrence relations of dynamic programming optimal strategy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kempf, K., Keskinocak, P., and Uzsoy, R., Eds., Planning Production and Inventories in the Extended Enterprise, Int. Ser. Oper. Res. Manage. Sci., vol. 152, New York: Springer, 2010.Google Scholar
  2. 2.
    Pinedo, M.L., Planning and Scheduling in Manufacturing and Services, New York: Springer-Verlag, 2005.zbMATHGoogle Scholar
  3. 3.
    Weglarz, J., Eds., Project Scheduling: Recent Models, Algorithms and Applications, New York: Springer, 1999.CrossRefGoogle Scholar
  4. 4.
    Sprecher, A., Resource-Constrained Project Scheduling: Exact Methods for the Multi-Mode Case, Ser. Lect. Notes Econ. Math. Syst., vol. 409, Berlin: Springer, 1994.Google Scholar
  5. 5.
    Hapke, M., Jaszkiewicz, A., and S-lowiński, R., Fuzzy Multi-Mode Resource-Constrained Project Scheduling with multiple Objectives, in Project Scheduling, Int. Ser. in Operations Research & Management Science, vol. 14, Węglarz, J., Ed., Boston: Springer, 1999.Google Scholar
  6. 6.
    Armbruster, D., Fonteijn, J., and Wienke, M., Modeling Production Planning and Transient Clearing Functions, Logistics Res., 2012, vol. 5, no. 3–4, pp. 133–139.CrossRefGoogle Scholar
  7. 7.
    Bügler, M. and Borrmann, A., Using Swap-Based Search Trees to Obtain Solutions for Resource Constrained Project Scheduling Problems, Proc. 85th Annual Meeting of the Int. Association of Applied Mathematics and Mechanics (GAMM), 2014, vol. 14, no. 1, pp. 809–810.CrossRefGoogle Scholar
  8. 8.
    Prilutskii, M.Kh., Optimal Planning for Two-Stage Stochastic Industrial Systems, Autom. Remote Control, 2014, vol. 75, no. 8, pp. 1384–1392.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Prilutskii, M.Kh. and Kostyukov, V.E., Optimization Models of Gas and Gas Condensate Processing, Autom. Remote Control, 2012, vol. 72, no. 8, pp. 345–349.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Prilutskii, M.Kh. and Kostyukov, V.E., Flow Models for Facilities with Continuous Production Cycle, Inf. Tekhnol., 2007, no. 10, pp. 47–52.Google Scholar
  11. 11.
    Prilutskii, M.Kh. and Vlasov, V.S., Resource Distribution Optimization Problems for Planning the Production of Microelectronic Devices, Sist. Upravlen. Inf. Tekhnol., 2009, no. 1, pp. 38–43.Google Scholar
  12. 12.
    Prilutskii, M.Kh., Multicriterial Multiindex Problems of Volume Calendar Planning, Izv. Akad. Nauk, Teor. Sist. Upravlen., 2007, no. 1, pp. 78–82.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Prilutskii, M.Kh., Optimal Planning for Models of Two-Stage Stochastic Production Systems, Proc. 7 Moscow Intl. Conf. on Operation Research (ORM 2013), Moscow, 2013, vol. 2, pp. 48–49.Google Scholar
  14. 14.
    Bellman, R., Dynamic Programming, Princeton, New Jersey: Princeton Univ. Press, 1957. Translated under the title Dinamicheskoe programmirovanie, Moscow: Inostrannaya Literatura, 1960.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations