Automation and Remote Control

, Volume 79, Issue 5, pp 793–810 | Cite as

Construction of a Topological Drawing of the Most Planar Subgraph of the Non-planar Graph

  • S. V. KurapovEmail author
  • A. V. Tolok
Linear Systems


An algorithm was presented to construct a flat drawing of the non-planar graph. The source for solution of the problem is a set of isometric cycles of the graph, which allows one to reduce the solution to the discrete optimization methods. Consideration was given to the necessary concepts and structures for solution of the problem of constructing a planar topological graph drawing.


graph rotation of graph vertices isometric cycles planarity planar part of a graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kurapov, S.V. and Tolok, A.V., The Topological Drawing of a Graph. Construction Methods, Autom. Remote Control, 2013, vol. 74, no. 9, pp. 1494–1509.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Nishizeki Takao and Rahman Saidur, Planar Graph Drawing, Lect. Notes Ser. Computing., Singapore: World Scientific, 2004, vol. 12.Google Scholar
  3. 3.
    Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, New York: W.H. Freeman, 1979. Translated under the title Vychislitel’nye mashiny i trudnoreshaemye zadachi, Moscow: Mir, 1982.zbMATHGoogle Scholar
  4. 4.
    Hopcroft, J.E. and Tarjan, R.E., Isomorphism of Planar Graphs, Kibernetich. Sb., 1975, vol. 12, pp. 39–61.zbMATHGoogle Scholar
  5. 5.
    Reingold, E.M., Nievergelt, J., and Deo, N., Combinatorial Algorithms: Theory and Practice, Englewood Cliffs: Prentice-Hall, 1977. Translated under the title Kombinatornye algoritmy, teoriya i praktika, Moscow: Mir, 1980.zbMATHGoogle Scholar
  6. 6.
    Kurapov, S.V. and Davidovskii, M.V., Verification for Planarity and Construction of the Topological Drawing of the Planar Graph (by In-depth Search), Prikl. Diskret. Mat., 2016, no. 2 (32), pp. 100–114.Google Scholar
  7. 7.
    Swamy, M.N.S. and Thulasiraman, K., Graphs, Networks, and Algorithms, New York: Wiley, 1981. Translated under the title Grafy, seti i algoritmy, Moscow: Mir, 1984.zbMATHGoogle Scholar
  8. 8.
    Ringel, G., Map Color Theorem, New York: Springer, 1974. Translated under the title Teorema o raskraske kart, Moscow: Mir, 1977.CrossRefzbMATHGoogle Scholar
  9. 9.
    Kurapov, S.V. and Davidovskii, M.V., Visualization of the Graph of Electrical Circuit Diagram. Geometrical and Topological Drawing of Planar Graph, Kompon. Tekhnol., 2017, no. 2, pp. 80–87.Google Scholar
  10. 10.
    Kavitha, T., Liebchen, C., Mehlhorn, K., Dimitrios, M., Romeo Rizzi, Ueckerdt, T., and Katharina, A., Cycle Bases in Graphs Characterization, Algorithms, Complexity, and Applications, Comput. Sci. Rev., 2009, vol. 3, pp. 199–243.CrossRefzbMATHGoogle Scholar
  11. 11.
    Kurapov, S.V. and Kondrat’eva, N.A., Graph Planarity Algorithms, Visn. Zaporiz. Derzhavn. Univ., Zb. Nauk. Statei. Fiz.-Mat. Nauki, 2001, no. 1, pp. 44–54.Google Scholar
  12. 12.
    MacLane, S., A Combinatorial Condition for Planar Graphs, Kibernetich. Sb., 1970, vol. 7, pp. 133–144.zbMATHGoogle Scholar
  13. 13.
    Kozin, I.V., Kurapov, S.V., and Polyuga, S.I., Evolution-Fragmentary Algorithm to Find the Most Planar Sugraph, Prikl. Diskr. Mat., 2015, no. 3 (9), pp. 74–82.Google Scholar
  14. 14.
    Bellert, S. and Wózniacki, H., The Analysis and Synthesis of Electrical Systems by Means of the Method of Structural Numbers, Warszawa: WNT, 1968. Translated under the title Analiz i sintez elektricheskikh tsepei metodom strukturnykh chisel, Moscow: Mir, 1972.Google Scholar
  15. 15.
    Lipski, W., Kombinatoryka dla programistow, Warszawa: Wydawnistwa Naukowo–Techniczne, 1982. Translated under the title Kombinatorika dlya programmistov (Combinatorics for Programmers), Moscow: Mir, 1988.Google Scholar
  16. 16.
    Sergienko, I.V. and Kaspshitskaya, M.F., Modeli i metody resheniya na EVM kombinatornykh zadach optimizatsii (Models and Methods of Computer-aided Solution of Combinatorial Optimization Problems), Kiev: Naukova Dumka, 1981.zbMATHGoogle Scholar
  17. 17.
    Zykov, A., Osnovy teorii grafov (Fundamentals of the Graph Theory), Moscow: Nauka, 1987.zbMATHGoogle Scholar
  18. 18.
    Harary, F., Graph Theory, Reading: Addison-Wesley, 1969. Translated under the title Teoriya grafov, Moscow: Mir, 1973.CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Zaporozhé National UniversityZaporozhéUkraine
  2. 2.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations