Automation and Remote Control

, Volume 79, Issue 4, pp 604–616 | Cite as

On the Test Volterra Equations of the First Kind in the Integral Models of Developing Systems

Nonlinear Systems
  • 1 Downloads

Abstract

The paper was devoted to analysis of the test Volterra equations of the first kind enabling one to study the specificity of important classes of integral equations in the mathematical models of developing system. Along with theoretical results, presented were numerical calculations for the model examples.

Keywords

developing system two age groups test Volterra equation of the first kind numerical solution instability error in the initial data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glushkov, V.M., On a Class of Dynamic Macroeconomic Models, Upravl. Sist. Mash., 1977, no. 2, pp. 3–6.Google Scholar
  2. 2.
    Glushkov, V.M., Ivanov, V.V., and Yanenko, V.M., Modelirovanie razvivayushchikhsya sistem (Modeling of Developing Systems), Moscow: Nauka, 1983.MATHGoogle Scholar
  3. 3.
    Yatsenko, Yu.P., Integral’nye modeli sistem s upravlyaemoi pamyat’yu (Integral Models of Controlledmemory Systems), Kiev: Naukova Dumka, 1991.MATHGoogle Scholar
  4. 4.
    Hritonenko, N. and Yatsenko, Yu., Applied Mathematical Modelling of Engineering Problems, Dortrecht: Kluwer, 2003.CrossRefMATHGoogle Scholar
  5. 5.
    Apartsin, A.S., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody (Nonclassical Volterra Equations of the First Kind: Theory and Numerical Methods), Novosibirsk: Nauka, 1999.Google Scholar
  6. 6.
    Messina, E., Russo, E., and Vecchio, A., A Stable Numerical Method for Volterra Integral Equations with Discontinuous Kernel, J. Math. Anal. Appl., 2008, no. 337, pp. 1383–1393.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Baker, C.T.H. and Derakhshan, M.S., Convergence and Stability of Quadrature Methods Applied to Volterra Equations with Delay, IMA J. Numer. Anal., 1993, no. 13, pp. 67–91.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Vermiglio, R., On the Stability of Runge-Kutta Methods for Delay Integral Equations, Numer. Math., 1992, no. 61, pp. 561–577.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hu Qiya, Multilevel Correction for Discrete Collocation Solutions of Volterra Integral Equations with Delay Arguments, Appl. Numer. Math., 1999, no. 31, pp. 159–171.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    El’sgol’ts, L.E. and Norkin, S.B., Vvedenie v teoriyu differentsial’nykh uravnenii s otklonyayushchimsya argumentom (Introduction to the Theory of Differential Equations with Divergent Argument), Moscow: Nauka, 1971.MATHGoogle Scholar
  11. 11.
    Brunner, H., Collocation and Continuous Implicit Runge–Kutta Methods for a Class of Delay Volterra Integral Equations, J. Comput. Appl. Math., 1994, no. 53, pp. 61–72.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hu Guang-Da, Hu Guang-Di, and Meguid, S., Stability of Runge-Kutta Methods for Delay Differential Systems with Multiple Delays, IMA J. Numer. Anal., 1999, no. 19, pp. 349–356.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Torelli, L. and Vermiglio, R., On the Stability of Continuous Quadrature Rules for Differential Equations with Several Constant Delays, IMA J. Numer. Anal., 1993, no. 13, pp. 291–302.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Apartsin, A.S. and Sidler, I.V., Using the Nonclassical Volterra Equations of the First Kind to Model the Developing Systems Control, Autom. Remote Control, 2013, vol. 74, no. 6, pp. 899–910.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Corless, R.M., Gonnet, G.H., Hare, D.E.G., and Jeffrey, D.J., Lambert’s W Function in Maple, Maple Technic. Newslett., 1993, no. 9, pp. 12–22.Google Scholar
  16. 16.
    Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., and Knuth, D.E., On the LambertW Function, Adv. Comput. Math., 1996, vol. 5, no. 1, pp. 329–359.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Apartsyn, A.S., Multilinear Volterra Equations of the First Kind, Autom. Remote Control, 2004, vol. 65, no. 2, pp. 263–269.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kantorovich, L.V. and Akilov, G.P., Funktsional’nyi analiz (Functional Analysis), Moscow, Nauka, 1977.MATHGoogle Scholar
  19. 19.
    Vilenkin, N.Ya., Kombinatorika (Combinatorics), Moscow: Nauka, 1969.Google Scholar
  20. 20.
    Apartsin, A.S., Inversion Formulas and Their Finite-dimensional Counterparts for Some Classes of Volterra Equations of the I Kind with Discontinuous Kernels, in Proc. Int. Conf. “Topical Problems of Numerical and Appied Mathematics—2015” Devoted to the 90th Anniversary of Acad. Gurii Ivanovich Marchuk, (CD-Proceedings), Novosibirsk, 2015, pp. 62–69.Google Scholar
  21. 21.
    Apartsin, A.S., On the Theory of Volterra Integral Equations of the First Kind with Discontinuous Kernels, Comput. Math. Math. Phys., 2016, vol. 56, no. 5, pp. 810–825.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Sidorov, D.N., On Parametric Families of Solutions of Volterra Integral Equations of the First Kind with Piecewise Smooth Kernels, Differ. Equat., 2013, vol. 49, no. 2, pp. 210–216.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Apartsin, A.S. and Sidler, I.V., On Numerical Solution of the Nonclassical Volterra Equations of the First Kind, in Collected Papers of IXth Int. Conf. “Analytical and Numerical Methods to Model and Social Problems,” Penza, Russia, 2014, pp. 59–64.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Melentiev Energy Systems Institute, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations