Skip to main content
Log in

Parametric Design of Optimal in Average Fractional-Order PID Controller in Flight Control Problem

  • Large Scale Systems Control
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper considers a problem of fractional-order PID controller tuning to optimize it in average over a set of initial states of the plant–controller closed system and over a set of typical input signals. The problem is reduced to a multidimensional optimization problem. We suggest an approach to the solution, implementing it algorithmically. The approach is illustrated by a parametric design of an optimal in average fractional-order PID controller for pitch control of an aircraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avsievich, A.V. and Avsievich, V.V., Modeling of Systems of Automatic Control with a Fractional PID Controller, Vestn. Samarsk. Gos. Tekhn. Univ., Ser. Tekhn. Nauki, 2010, no. 1(26), pp. 6–59.

    Google Scholar 

  2. Bodner, V.A., Teoriya avtomaticheskogo upravleniya poletom (Automatic Flight Control Theory), Moscow: Nauka, 1961.

    Google Scholar 

  3. Butkovskii, A.G., Postnov, S.S., and Postnova, E.A., Fractional Integro-Differential Calculus and Its Control-Theoretical Applications. II. Fractional Dynamic Systems: Modeling and Hardware Implementation, Autom. Remote Control, 2013, vol. 74, no. 5, pp. 725–749.

    Article  MathSciNet  MATH  Google Scholar 

  4. Panteleev, A.V. and Letova, T.A., Metody optimizatsii v primerakh i zadachakh (Optimization Methods in Examples and Problems), Moscow: Vysshaya Shkola, 2008.

    Google Scholar 

  5. Panteleev, A.V., Letova, T.A., and Pomazueva, E.A., An Application of Global Optimization Methods to the Parametric Synthesis of Generalized Proportional-Integral-Derivative Controller for Flight Control Problems, Tr. MAI, 2015, no. 79.

    Google Scholar 

  6. Panteleev, A.V., Metlitskaya, D.V., and Aleshina, E.A., Metody global’noi optimizatsii. Metaevristicheskie strategii i algoritmy (Global Optimization Methods. Metaheuristic Strategies and Algorithms), Moscow, Vuzovskaya Kniga, 2013.

    Google Scholar 

  7. Cai, X. and Liu, F., Numerical Simulation of the Fractional-Order Control System, J. Appl. Math. Comp., 2007, vol. 23, no. 1–2, pp. 229–241.

    Article  MathSciNet  MATH  Google Scholar 

  8. Caponetto, R., Dongola, G., Fortuna, L., et al., Fractional Order Systems. Modelling and Control Applications, Singapore: World Scintific, 2010.

    Book  MATH  Google Scholar 

  9. Castillo, F.J., Feliu, V., Rivas, R., et al., Design of a Class of Fractional Controllers from Frequency Specifications with Guaranteed Time Domain Behavior, Comput. Math. Appl., 2010, vol. 50, pp. 1656–1666.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Y.Q., Petras, I., and Xue, D., Fractional Order Control: A Tutorial, Proc. 2009 Am. Control Conf., St. Louis, 2009, pp. 1397–1411.

    Chapter  Google Scholar 

  11. Harley, T.T. and Lorenzo, C.F., Dynamics and Control of Initialized Fractional-Order Systems, Nonlin. Dyn., 2002, vol. 29, no. 1–4, pp. 201–233.

    Article  MathSciNet  MATH  Google Scholar 

  12. Matingnon, D., Stability Properties for Generalized Fractional Differential Systems, Proc. Colloq. Fractional Differential Systems: Models, Methods and Applications, Paris, 1998, vol. 5, pp. 145–158.

    Google Scholar 

  13. Monje, C.A., Chen, Y.Q., Vinagre, B.M., et al., Fractional-Order Systems and Controls: Fundamentals and Applications, London: Springer-Verlag, 2010.

    Book  MATH  Google Scholar 

  14. Mophou, G.M., Optimal Control of Fractional Diffusion Equation, Comput. Math. Appl., 2011, vol. 61, pp. 68–78.

    Article  MathSciNet  MATH  Google Scholar 

  15. Mozyrska, D. and Torres, D.F.M., Modified Optimal Energy and Initial Memory of Fractional Continuous-Time Linear Systems, Signal Proc., 2011, vol. 91, pp. 379–385.

    Article  MATH  Google Scholar 

  16. Özdemir, N., Karadeniz, D., and Iskender, B.B., Fractional Optimal Control Problem of a Distributed System in Cylindrical Coordinates, Phys. Lett. A, 2009, vol. 373, pp. 221–226.

    Article  MathSciNet  MATH  Google Scholar 

  17. Padula, F. and Visioli, A., Tuning Rules for Optimal PID and Fractional-Oder PID Controlles, J. Proc. Contr., 2011, vol. 21, pp. 69–81.

    Article  Google Scholar 

  18. Tavazoei, M.S., Notes on Integral Performance Indices in Fractional-Order Control Systems, J. Proc. Contr., 2010, vol. 20, pp. 285–291.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Panteleev.

Additional information

Original Russian Text © A.V. Panteleev, T.A. Letova, E.A. Pomazueva, 2015, published in Upravlenie Bol’shimi Sistemami, 2015, No. 56, pp. 176–200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panteleev, A.V., Letova, T.A. & Pomazueva, E.A. Parametric Design of Optimal in Average Fractional-Order PID Controller in Flight Control Problem. Autom Remote Control 79, 153–166 (2018). https://doi.org/10.1134/S0005117918010137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918010137

Keywords

Navigation