Skip to main content
Log in

Formalizing a Sequential Calibration Scheme for a Strapdown Inertial Navigation System

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider a known bench calibration scheme for a strapdown inertial navigation system (SDINS) that consists of sequential rotations of the SDINS on the bench. We propose a mathematical formalization of this calibration scheme that lets us embed the calibration problem to stochastic Kalman setting of the estimation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishlinskii, A.Yu., Orientatsiya, giroskopy i inertsial’naya navigatsiya (Orientation, Gyroscopes, and Inertial Navigation), Moscow: Nauka, 1976.

    Google Scholar 

  2. Golovan, A.A. and Parusnikov, N.A., Matematicheskie osnovy navigatsionnykh sistem. Ch. I. Matematicheskie modeli inertsial’noi navigatsii (Mathematical Foundations of Navigation Systems. Part I. Mathematical Models of Inertial Navigation), Moscow: MAKS Press, 2011.

    Google Scholar 

  3. Derevyankin, A.V. and Matasov, A.I., A “Telescopic” System in the Calibration Problem for Strapdown Inertial Navigational Systems, Vest. Mosk. Gos. Univ., Ser. 1, Mat. Mekh., 2012, no. 2, pp. 40–43.

    Google Scholar 

  4. Akimov, P.A., Derevyankin, A.V., and Matasov A.I., Garantiruyushchii podkhod i l 1-approksimatsiya v zadachakh otsenivaniya parametrov besplatformennykh inertsial’nykh navigatsionnykh sistem pri stendovykh ispytaniyakh (Guaranteed Approach and l 1-Norm Approximation in the Problems of SDINS Parameter Estimation under Bench Testing), Moscow: Mosk. Gos. Univ., 2012.

    Google Scholar 

  5. Bobrik, G.I. and Matasov, A.I., Optimal Guaranteed Estimation of Parameters of a Block of Accelerometers, Izv. Ross. Akad. Nauk, Mekh. Tverdogo Tela, 1993, no. 5, pp. 8–14.

    Google Scholar 

  6. Bolotin, Yu.V., Golikov, V.P., Larionov, S.V., et al., Calibration Algorithm for a Platform-Based Inertial Navigation System, Giroskop. Navigats., 2008, no. 3, pp. 13–27.

    Google Scholar 

  7. Bolotin, Yu.V., Derevyankin, A.V., and Matasov, A.I., Iterational Calibration Scheme for a Block of Accelerometers with the Guaranteed Approach, Izv. Ross. Akad. Nauk, Mekh. Tverdogo Tela, 2008, no. 3, pp. 48–61.

    Google Scholar 

  8. Braslavskii, D.A., Polikovskii, E.F., and Yakubovich, A.M., A Method of Calibration for a Three-Axis Block of Accelerometers, Patent Claim no. 2422425/23 with priority of November 24, 1976.

    Google Scholar 

  9. Vavilova, N.B., Parusnikov, N.A., and Sazonov, I.Yu., Calibrating of Strapdown Inertial Navigation Systems with Rough Single-Axis Benches, Sovrem. Probl. Mat. Mekh., Prikl. Issled., 2009, vol. 1, pp. 212–223.

    Google Scholar 

  10. Veremeenko, K.K. and Galai, I.A., Developing the Calibration Algorithm for an Inertial Navigation System on a Two-Axis Bench, Elektron. Zh. “Tr. MAI,” 2013, no. 63.

    Google Scholar 

  11. Golovan, A.A. and Parusnikov, N.A., Matematicheskie osnovy navigatsionnykh sistem. Ch. II. Prilozheniya metodov optimal’nogo otsenivaniya k zadacham navigatsii (Mathematical Foundations of Navigation Systems. Part II. Applications of Optimal Estimation Methods to Navigation Problems), Moscow: MAKS Press, 2012.

    Google Scholar 

  12. Gusinskii, V.Z., Lesyuchevskii, V.M., Litmanovich, Yu.A., et al., Calibration Algorithm for a Three-Axis Block of Accelerometers Intended for Use in SDINS, Giroskop. Navigats., 2000, no. 4 (31), p. 86.

    Google Scholar 

  13. Dranitsyna, E.V., Calibrating a Measurement Unit by the Navigation Solution of SDINS: Choosing a Schedule of Bench Motion, Sb. materialov XXIV S.-Peterburgskoi konf. po integrirovannym navigatsionnym sistemam (Proc. XXIV St. Petersburg Conf. on Integrated Navigation Systems), St. Petersburg: SJC “Kontsern “TsNII “Elektropribor,” 2017, pp. 235–240.

    Google Scholar 

  14. Egorov, Yu.G. and Popov, E.A., A Study of Minimally Redundant Calibration Programs for a Triad of Accelerometers, Aviakosm. Priborostr., 2016, no. 6, pp. 3–8.

    Google Scholar 

  15. Emel’yantsev, G.I. and Stepanov, A.P., Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated Inertial-Satellite Systems of Orientation and Navigation), St. Petersburg: SJC “Kontsern “TsNII “Elektropribor,” 2016.

    Google Scholar 

  16. Ermakov, V.S., Dunaev, D.A., Shirokov, A.A., et al., Calibrating Strapdown Inertial Systems of Navigation and Orientation, Aerokosm. Tekh., Vestn. PGTU, 2004, no. 18, pp. 25–30.

    Google Scholar 

  17. Izmailov, E.A., Lepe, S.N., Molchanov, A.V., et al., A Scalar Calibration and Balancing Method for Strapdown Inertial Navigation Systems, Sb. materialov yubileinoi XV S.-Peterburgskoi konf. po integrirovannym navigatsionnym sistemam (Proc. XV St. Petersburg Conf. on Integrated Navigation Systems), St. Petersburg: AO “Kontsern “TsNII “Elektropribor,” 2008, pp. 145–154.

    Google Scholar 

  18. Matasov, A.I., Parameter Identification for a Random Drift of a Gyroplatform in Bench Trials, Izv. Akad. Nauk SSSR, Mekh. Tverdogo Tela, 1985, no. 2, pp. 36–42.

    Google Scholar 

  19. Matasov, A.I. and Tikhomirov, V.V., The Rao-Kramer Inequality in the Identification Problem for Gyroscopic Drift, in Problemy obrabotki informatsii pri letnykh ispytaniyakh (Information Processing Problems in Airborne Tests), Moscow: Mosk. Aviats. Inst., 1986, pp. 60–62.

    Google Scholar 

  20. Parusnikov, N.A., Tikhomirov, V.V., and Trubnikov, S.A., Determination Instrumental Errors of an Inertial Navigation System on an Motionless Base, Fundam. Prikl. Mat., 2005, vol. 11, no. 7, pp. 159–166.

    Google Scholar 

  21. Parusnikov, N.A., Calibration Problems for a Strapdown Inertial Navigation Systems, Izv. Ross. Akad. Nauk, Mekh. Tverdogo Tela, 2009, no. 4, pp. 3–9.

    Google Scholar 

  22. Sazonov, I.Yu. and Shaimardanov, I.Kh., Calibrating a Strapdown Inertial Navigation Systems on Micromechanical Sensors of Accelerometers and Gyroscopes, Voprosy oboronnoi tekhniki (Problems of Defense Technics), Ser. 9 “Special Control Systems, Servo Drives, and Their Elements,” Moscow: Informtekhnika, 2010, no. 3 (244)–4 (245), pp. 73–82.

    Google Scholar 

  23. Cai, Q., Yang, G., Song, N., et al., Systematic Calibration for Ultra-High Accuracy Inertial Measurement Unit, Sensors, 2016, no. 16 (940).

    Google Scholar 

  24. Moon-Sik, K., Si-Bok, Y., and Kwang-Soo, L., Development of High-precision Calibration Method for Inertial Measurement Unit, Int. J. Precis. Engin. Man., 2014, vol. 15, no. 3, pp. 567–575.

    Article  Google Scholar 

  25. Paternain, S., Tailanian, M., and Canetti, R., Calibration of an Inertial Measurement Unit, Proc. 16th Int. Conf. on Advanced Robotics, Montevideo, 2013, pp. 931–936.

    Google Scholar 

  26. Secer, G. and Barshan, B., Improvements in Deterministic Error Modeling and Calibration of Inertial Sensors and Magnitometers, Sens. Actuators A: Phys., 2016, no. 247, pp. 522–538.

    Article  Google Scholar 

  27. Syed, Z.F., Aggarwal, P., Goodall, C., et. al., A New Multi-position Calibration Method for MEMS Inertial Navigation Systems, Measur. Sci. Tech., 2007, no. 18, pp. 1897–1907.

    Article  Google Scholar 

  28. Xu, Y., Wang, Y., Su, Y., et al., Research on the Calibration Method for Micro Inertial Measurement Unit for Engineering Applications, J. Sensors, 2016, vol. 2016, ID 9108197.

    Google Scholar 

  29. Kailath, T., Sayed, A.H., and Hassibi, B., Linear Estimation, New Jersey: Prentice-Hall, 2000.

    MATH  Google Scholar 

  30. Matasov, A.I. and Tikhomirov, V.V., Calibrating a Strapdown Inertial Navigation Systems under Rotation around the Vertical Axis, Tr. MAI, 2016, no. 89, pp. 1–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Derevyankin.

Additional information

Original Russian Text © A.V. Derevyankin, A.I. Matasov, 2018, published in Avtomatika i Telemekhanika, 2018, No. 1, pp. 66–83.

This paper was recommended for publication by A.I. Kibzun, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derevyankin, A.V., Matasov, A.I. Formalizing a Sequential Calibration Scheme for a Strapdown Inertial Navigation System. Autom Remote Control 79, 51–65 (2018). https://doi.org/10.1134/S0005117918010058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918010058

Keywords

Navigation