Skip to main content
Log in

Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

For a version of the generalized Kuramoto–Sivashinsky equation with “violated” symmetry, the periodic boundary value problem was investigated. For the given dynamic distributed-parameter system, consideration was given to the issue of local bifurcations at replacing stability by spatially homogeneous equilibrium states. In particular, the bifurcation of the two-dimensional local attractor with all Lyapunov-unstable solutions on it was detected. Analysis of the bifurcation problem relies on the method of the integral manifolds and normal forms for the systems with infinitely dimensional space of the initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuramoto, Y., Chemical Oscillations Waves and Turbulence, Berlin: Springer, 1984.

    Book  MATH  Google Scholar 

  2. Sivashinsky, G.I., Weak Turbulence in Periodic Flow, Phys. D, 1985, vol. 17, no. 2, pp. 234–255.

    Article  MathSciNet  Google Scholar 

  3. Conte, R. and Musette, M., Uedinennye volny nelineinykh neintegriruemykh uravnenii. Dissipativnye solitony (SolitaryWaves of Nonlinear Nonintegrable Equations. Dissipative Solitons), Moscow: Fizmatlit, 2008.

    Google Scholar 

  4. Bradley, R.M. and Harper, J.M.E., Theory of Ripple Topography by Ion Bombardment, J. Vac. Technol. A, 1988, vol. 6, no. 4, pp. 2390–2395.

    Article  Google Scholar 

  5. Pearson, D.A. and Bradley, R.M., Theory of Terraced Topographics Produced by Oblique-Incedence Ion Bombardment of Solid Surfaces, J. Phys.: Condens. Matter, 2015, no. 27, pp. 1–15.

    Google Scholar 

  6. Kulikov, A.N. and Kulikov, D.A., Generation of Sinuous Nanostructures on the Surface of Planar Wafers at Ion Bombardment, Zh. Vychisl. Mat. Mat. Fiz., 2012, vol. 52, no. 5, pp. 930–945.

    MathSciNet  MATH  Google Scholar 

  7. Kulikov, A.N. and Kulikov, D.A., Bifurcations of Spatially Heterogeneous Solutions in Two Boundary Problems for Generalized Kuramoto–Sivashinsky Equation, Vestn. MIFI, 2014, vol. 3, no. 4, pp. 468–415.

    Google Scholar 

  8. Kulikov, A.N. and Kulikov, D.A., Bifurcations in a Boundary-value Problem of Nanoelectronics, J. Math. Sci., 2015, vol. 208, no. 2, pp. 211–221.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gelfand, M.P. and Bradley, R.M., One Dimensional Conservative Surface Dynamics with Broken Parity: Arrested Collapse Versus Coarsening, Phys. Lett. A, 2015, vol. 379, pp. 199–205.

    Article  MathSciNet  Google Scholar 

  10. Nicolaenko, B., Scheurer, B., and Temam, R., Some Global Dynamical Property of the Kuramoto–Sivashinsky Equation: Nonlinear Stability and Attractors, Phys. D, 1985, vol. 16, no. 2, pp. 155–183.

    Article  MathSciNet  MATH  Google Scholar 

  11. Armbuster, D., Guckenheimer, J., and Holmes, Ph., Kuramoto–Sivashinsky Dynamics on the Centerunstable Manifold, SIAM J. Appl. Math., 1989, vol. 49, no. 3, pp. 679–691.

    Google Scholar 

  12. Akhmetzyanov, A.V., Kushner, A.G., and Lychagin, V.V., Attractors in the Filtration Models, Dokl. Ross. Akad. Nauk, 2017, vol. 472, no. 6, pp. 627–630.

    MathSciNet  MATH  Google Scholar 

  13. Kushner, A., Lychagin, V., and Rubtsov, V., Contact Geometry and Non-Linear Differential Equations, Cambridge: Cambridge Univ. Press, 2007.

    MATH  Google Scholar 

  14. Sobolevskii, P.E., On Parabolic Equations in the Banach Space, Tr. MMO, 1961, vol. 10, pp. 297–350.

    Google Scholar 

  15. Marsden, J. and McCracken, M., Hopf Bifurcation and Its Applications, New York: Springer, 1982. Translated under the title Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Moscow: Mir, 1980.

    MATH  Google Scholar 

  16. Krein, S.G., Lineinye differentsial’nye operatory v banakhovom prostranstve (Linear Differential Operators in the Banach Space), Moscow: Nauka, 1967.

    Google Scholar 

  17. Arnol’d, V.I., Dopolnitel’nye glavy teorii obyknovennykh differentsial’nykh uravnenii (Additional Chapters of the Theory of Ordinary Differential Equations), Moscow: Nauka, 1978.

    MATH  Google Scholar 

  18. Kulikov, A.N. and Kulikov, D.A., Bifurcation in Kuramoto–Sivashinsky Equation, Pliska Stud. Math., 2015, no. 6, pp. 101–110.

    MATH  Google Scholar 

  19. Kulikov, A.N., Attractors of Two Boundary Problems for Modified Equations of Telegraphy, Nelin. Dinamika, 2008, vol. 4, no. 1, pp. 57–68.

    Article  Google Scholar 

  20. Kulikov, A.N. and Kulikov, D.A., Nonlocal Model of Relief Formation under the Action of Ion Flow. Nonhomogeneous Nanostructures, Mat. Modelir., 2016, vol. 28, no. 3, pp. 33–50.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kulikov.

Additional information

Original Russian Text © A.N. Kulikov, D.A. Kulikov, 2017, published in Avtomatika i Telemekhanika, 2017, No. 11, pp. 20–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, A.N., Kulikov, D.A. Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation. Autom Remote Control 78, 1955–1966 (2017). https://doi.org/10.1134/S0005117917110029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917110029

Keywords

Navigation