Skip to main content
Log in

Adapting wing elements (“feathers”) of an airplane in a turbulent flow with a multiagent protocol

  • Control in Technical Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Miniaturization and improved performance of computers, sensors, and executive devices open up new possibilities for intelligent control over complex mechatronic systems on transition processes and under turbulence. Previously, adaptive control problems in a changing environment and with state space structure changing in time have virtually not been studied due to limited capabilities for a practical implementation. The change of the state space structure (dimension) is possible under active interaction with the environment. In this work, with the example of an airplane with a large number of “feathers” distributed on the surface, i.e., elements with pressure sensors and executive turning devices, we show that in complex systems adaptation to changes in the structure of external disturbances can be done with internal selforganization, similar to multiagent systems. Under turbulence, to solve the problem of equating the influence of disturbing forces on different elements of the wing and transforming airplane flow to a mode close to laminar, we have considered the possibility to apply a multiagent protocol. The operability of the new approach is illustrated with a specially made experimental testbed that allows for real physical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Granichin, O. and Khantuleva, T., Hybrid Systems and Randomized Measuring in Nonequilibrium Processes, Differ. Equat. Control Process, 2004, no. 3, pp. 35–43.

    MathSciNet  Google Scholar 

  2. Sinai, Ya.G., Constructing Cluster Dynamics for Dynamical Systems of Statistical Mechanics, Vestn. Mosk. Gos. Univ., Ser. Mat. Mekh., 1974, vol. 29, no. 1, pp. 152–158.

    Google Scholar 

  3. Meshcheryakov, Yu.I. and Khantuleva, T.A., Nonequilibrium Processes in Condensed Media: Part 1. Experimental Studies in Light of Nonlocal Transport Theory, Phys. Mesomech., 2015, vol. 18, no. 3, pp. 228–243.

    Article  Google Scholar 

  4. Khantuleva, T.A. and Meshcheryakov, Yu.I., Nonequilibrium Processes in Condensed Media. Part 2. Structural Instability Induced by Shock Loading, Phys. Mesomech., 2016, vol. 19, no. 1, pp. 69–76.

    Article  Google Scholar 

  5. Pashkevich, V.V., Meier, P., Brack, M., and Unzhakova, A.V., Semiclassical Analysis of the Lowest-Order Multipole Deformations of Simple Metal Clusters, Phys. Lett. A, 2002, vol. 294, pp. 314–318.

    Article  Google Scholar 

  6. Unzhakova, A.V., Khantuleva, T.A., and Granichin, O.N., Cluster Degrees of Freedom in Fission of Actinides, in Fission and Properties of Neutron-Rich Nuclei, Proc. 6th Int. Conf. ICFN6, 2017.

    Google Scholar 

  7. Zubarev, D.N., Neravnovesnaya statisticheskaya termodinamika (Nonequilibrium Statistical Thermodynamics), Moscow: Nauka, 1971.

    Google Scholar 

  8. Khantuleva, T.A., Nelokal’naya teoriya neravnovesnykh protsessov perenosa (Nonlocal Theory of Nonequilibrium Transfer Processes), St. Petersburg: S.-Peterburg. Gos. Univ., 2013.

    Google Scholar 

  9. Vavilov, S.A., A Method of Studying the Existence of Nontrivial Solutions to Some Classes of Operator Equations with an Application to Resonance Problems in Mechanics, Nonlin. Anal., 1995, vol. 24, no. 5, pp. 747–764.

    Article  MathSciNet  MATH  Google Scholar 

  10. Fradkov, A.L., Horizons of Cybernetical Physics, Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci., 2017, vol. 375, no. 2088, 20160223.

    Google Scholar 

  11. Khantuleva, T.A. and Shalymov, D.S., Modelling Non-equilibrium Thermodynamic Systems from the Speed-Gradient Principle, Philos. Trans. Royal Soc. A, 2017, vol. 375, no. 2088, 2016220.

    Article  MathSciNet  Google Scholar 

  12. Emel’yanov, S.V., Sistemy avtomaticheskogo upravleniya s peremennoi strukturoi (Automated Control Systems with Variable Structure), Moscow: Nauka, 1967.

    Google Scholar 

  13. Utkin, V.I., Sliding Modes in Control and Optimization, Berlin: Springer-Verlag, 1992.

    Book  MATH  Google Scholar 

  14. Olfati-Saber, R., Fax, J., and Murray, R., Consensus and Cooperation in Networked Multi-Agent Systems, Proc. IEEE, 2007, vol. 95, no. 1, pp. 215–233.

    Article  Google Scholar 

  15. Ren, W., Beard, R., and Atkins, E., Information Consensus in Multivehicle Cooperative Control, IEEE Control Syst., 2007, vol. 27, no. 2, pp. 71–82.

    Article  Google Scholar 

  16. Chebotarev, P.Yu. and Agaev, R.P., Coordination in Multiagent Systems and Laplacian Spectra of Digraphs, Autom. Remote Control, 2009, vol. 70, no. 3, pp. 469–483.

    Article  MathSciNet  MATH  Google Scholar 

  17. Amelina, N.O., Scheduling Networks with Variable Topology in the Presence of Noise and Delays in Measurements, Vestn. S.-Peterburg. Gos. Univ., Mat., Mekh., Astron., 2012, vol. 45, no. 2, pp. 56–60.

    MathSciNet  MATH  Google Scholar 

  18. Lewis, F., Zhang, H., Hengster-Movric, K., et al., Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches (Communications and Control Engineering), New York: Springer, 2014.

    Book  MATH  Google Scholar 

  19. Proskurnikov, A.V. and Cao, M., Synchronization of Goodwin’s Oscillators under Boundedness and Nonnegativeness Constraints for Solutions, IEEE Trans. Automat. Control, 2017, vol. 62, no. 1, pp. 372–378.

    Article  MathSciNet  MATH  Google Scholar 

  20. Granichin, O., Khantuleva, T., and Granichina, O., Local Voting Protocol for the Adaptation of Airplane’s “Feathers” in a Turbulence Flow, Proc. 2017 Am. Control Conf., Seattle, May 24–26, 2017, pp. 5684–5689.

    Google Scholar 

  21. Amelina, N.O. and Fradkov, A.L., Approximate Consensus in the Dynamic Stochastic Network with Incomplete Information and Measurement Delays, Autom. Remote Control, 2012, vol. 73, no. 11, pp. 1765–1783.

    Article  MathSciNet  MATH  Google Scholar 

  22. Amelina, N., Fradkov, A., Jiang, Y., et al., Approximate Consensus in Stochastic Networks with Application to Load Balancing, IEEE Trans. Inform. Theory, 2015, vol. 61, no. 4, pp. 1739–1752.

    Article  MathSciNet  MATH  Google Scholar 

  23. Ligum, T.I., Aerodinamika i dinamika poleta turboreaktivnykh samoletov (Aerodynamics and Flight Dynamics of Turbo-Jet Airplanes), Moscow: Transport, 1967.

    Google Scholar 

  24. Granichin, O., Khantuleva, T., and Amelina, N., Adaptation of Aircraft’s Wings Elements in Turbulent Flows by Local Voting Protocol, Proc. 20th World Congr. Int. Federation of Automatic Control, Toulouse, France, 9–14 July 2017, pp. 1940–1945.

    Google Scholar 

  25. Klimontovich, Yu.L., Turbulentnoe dvizhenie i struktura khaosa (Turbulent Motion and Structure of Chaos), Moscow: Nauka, 1990.

    Google Scholar 

  26. Zhuravlev, V.F., Osnovy teoreticheskoi mekhaniki (Fundamentals of Theoretical Mechanics), Moscow: Fizmatlit, 2001, 2nd ed.

    Google Scholar 

  27. Amelina, N.O., Multiagent Technologies, Adaptation, Self-Organization, Achieving Consensus, Stokh. Optimiz. Informatik., 2011, vol. 7, no. 1, pp. 149–185.

    Google Scholar 

  28. Fradkov, A.L., Investigation of Physical Systems by Feedback, Autom. Remote Control, 1999, vol. 60, no. 3, pp. 471–483.

    MATH  Google Scholar 

  29. Kalmuk, A., Granichin, O., Granichina, O., et al., Detection of Abrupt Changes in Autonomous System Fault Analysis Using Spatial Adaptive Estimation of Nonparametric Regression, Proc. 2016 Am. Control Conf., Boston, July 6–8 2016, pp. 6839–6844.

    Google Scholar 

  30. Granichin, O.N., How Are Complex Information–Control Systems Actually Structured? Stokh. Optimiz. Informat., 2016, vol. 12, no. 1, pp. 3–19.

    Google Scholar 

  31. Granichin, O. and Amelina, N., Simultaneous Perturbation Stochastic Approximation for Tracking under Unknown but Bounded Disturbances, IEEE Trans. Automat. Control, 2015, vol. 60, no. 6, pp. 1653–1658.

    Article  MathSciNet  MATH  Google Scholar 

  32. Amelin, K. and Granichin, O., Randomized Control Strategies under Arbitrary External Noise, IEEE Trans. Automat. Control, 2016, vol. 61, no. 5, pp. 1328–1333.

    Article  MathSciNet  MATH  Google Scholar 

  33. Granichin, O.N., Amelin, K.S., and Amelina, N.O., Invention Claim, Aerodynamic Wing of a Flying Vehicle with Adaptive Changing Surface, no. 2016147133/20(075649), 30.11.2016.

    Google Scholar 

  34. Amelin, K., Amelina, N., Ivanskiy, Y., et al., Choice of Step-Size for Consensus Protocol in Changing Conditions via Stochastic Approximation Type Algorithm, Proc. 2016 Int. Conf. on Control, Decision and Information Technologies (CoDIT), 2016, pp. 7–11.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Granichin.

Additional information

Original Russian Text © O.N. Granichin, T.A. Khantuleva, 2017, published in Avtomatika i Telemekhanika, 2017, No. 10, pp. 168–188.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granichin, O.N., Khantuleva, T.A. Adapting wing elements (“feathers”) of an airplane in a turbulent flow with a multiagent protocol. Autom Remote Control 78, 1867–1882 (2017). https://doi.org/10.1134/S0005117917100101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917100101

Keywords

Navigation