Skip to main content
Log in

A study of the boundaries of stability regions in two-parameter dynamical systems

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider dynamical systems defined by autonomous and periodic differential equations that depend on two scalar parameters. We study the problems of constructing boundaries of stability regions for equilibrium points in the plane of parameters. We identify conditions under which a point on the boundary of a stability region has one or more smooth boundary curves coming through it. We show schemes to find the basic scenarios of bifurcations when parameters transition over the boundaries of stability regions. We distinguish types of boundaries (dangerous or safe). The main formulas have been obtained in the terms of original equations and do not require to pass to normal forms and using theorems on a central manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bautin, N.N., Povedenie dinamicheskikh sistem vblizi granits oblasti ustoichivosti (Behaviour of Dynamical Systems Near the Boundaries of the Stability Region), Ser. “Modern Problems of Mechanics,” Leningrad: OGIZ Gostekhizdat, 1949.

    Google Scholar 

  2. Shil’nikov, L.P., Shil’nikov, A.L., Turaev, D.V., et al., Metody kachestvennoi teorii v nelineinoi dinamike (Qualitative Theory Methods in Nonlinear Dynamics), part 2, Moscow: Inst. Komp. Issl., 2009.

    Google Scholar 

  3. Marsden, J. and McCracken, M., Hopf Bifurcation and Its Applications, New York: Springer, 1982. Translated under the title Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Moscow: Mir, 1980.

    MATH  Google Scholar 

  4. Cesari, L., Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Berlin: Springer, 1959. Translated under the title Asimptoticheskoe povedenie i ustoichivost’ reshenii obyknovennykh differentsial’nykh uravnenii, Moscow: Mir, 1964.

    Book  MATH  Google Scholar 

  5. Yakubovich, V.A. and Starzhinskii, V.M., Lineinye differentsial’nye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya (Linear Differential Equations with Periodic Coefficients and Their Applications), Moscow: Nauka, 1972.

    Google Scholar 

  6. Chiang, H.D. and Alberto, L.F.C., Stability Regions of Nonlinear Dynamical Systems: Theory, Estimation, and Applications, Cambridge: Cambridge Univ. Press, 2015.

    Book  MATH  Google Scholar 

  7. Loccufier, M. and Noldus, E., A New Trajectory Reversing Method for Estimating Stability Regions of Autonomous Nonlinear Systems, Nonlin. Dynam., 2000, vol. 21, pp. 265–288.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ibragimova, L.S., Mustafina, I.Zh., and Yumagulov, M.G., Asymptotic Formulas in the Problem of Constructing Hyperbolicity and Stability Regions for Dynamical Systems, Ufimsk. Mat. Zh., 2016, vol. 8, no. 3, pp. 59–81.

    Article  MathSciNet  Google Scholar 

  9. Guckenheimer, J. and Holmes, Ph., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42, New York: Springer, 1990. Translated under the title Nelineinye kolebaniya, dinamicheskie systemy i bifurkatsii vektornykh polei, Moscow: Inst. Komp. Issl., 2002.

  10. Bryuno, A.D., Analytic Form of Differential Equations, Tr. MMO, 1971, vol. 25, pp. 119–262; 1972, vol. 26, pp. 199–239.

    MathSciNet  MATH  Google Scholar 

  11. Rozo, M., Nelineinye kolebaniya i teoriya ustoichivosti (Nonlinear Oscillations and Stability Theory), Moscow: Nauka, 1971.

    Google Scholar 

  12. Krasnosel’skii, M.A. and Yumagulov, M.G., Method of Parameter Functionalization in the Eigenvalue Problem, Dokl. Ross. Akad. Nauk, 1999, vol. 365, no. 2, pp. 162–164.

    MATH  Google Scholar 

  13. Vyshinskii, A.A., Ibragimova, L.S., Murtazina, S.A., et al., Operator Method for an Approximate Study of Regular Bifurcation in Multiparametric Dynamical Systems, Ufimsk. Mat. Zh., 2010, vol. 2, no. 4, pp. 3–26.

    Google Scholar 

  14. Krasnosel’skii, M.A., Kuznetsov, N.A., and Yumagulov, M.G., An Operator Method for Analyzing the Stability of Cycles in the Hopf Bifurcation, Autom. Remote Control, 1996, vol. 57, no. 12, part 1, pp. 1701–1706.

    MathSciNet  MATH  Google Scholar 

  15. Yumagulov, M.G., Localization of Arnold Languages for Discrete Dynamical Systems, Ufimsk. Mat. Zh., 2013, vol. 5, no. 2, pp. 109–131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Yumagulov.

Additional information

Original Russian Text © M.G. Yumagulov, I.Zh. Mustafina, L.S. Ibragimova, 2017, published in Avtomatika i Telemekhanika, 2017, No. 10, pp. 74–89.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yumagulov, M.G., Mustafina, I.Z. & Ibragimova, L.S. A study of the boundaries of stability regions in two-parameter dynamical systems. Autom Remote Control 78, 1790–1802 (2017). https://doi.org/10.1134/S0005117917100046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917100046

Keywords

Navigation