Skip to main content
Log in

Analysis of a multicriterial buffer capacity optimization problem for a production line

  • Stochastic Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider a multicriterial optimization problem for volumes of buffers in a production line. We assume that the line has a series-parallel structure, and during its operation equipment stops occur due to failures, stops that are random in the moments when they arise and in their durations. The volumes of buffers are integer-valued and bounded from above. As criteria we consider the average production rate of the line, capital costs for installing buffers, and the inventory cost for intermediate products. To approximate the Pareto optimal set we use evolutionary algorithms SIBEA and SEMO. Problems with larger dimension experimentally support the advantage of the modified SEMO algorithm with respect to the hypervolume of the resulting set of points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tempelmeier, H., Practical Considerations in the Optimization of Flow Production Systems, Int. J. Product. Res., 2003, vol. 41, no. 1, pp. 149–170.

    Article  Google Scholar 

  2. Patchong, A., Lemoine, T., and Kern, G., Improving Car Body Production at PSA Peugeot Citroen, Interfaces, 2003, vol. 33, no. 1, pp. 36–49.

    Article  Google Scholar 

  3. Dallery, Y. and Gershwin, S.B., Manufacturing Flow Line Systems: A Review of Models and Analytical Results, Queueing Syst., 1992, vol. 12, nos. 1–2, pp. 3–94.

    Article  MATH  Google Scholar 

  4. Dolgui, A.B. and Svirin, Yu.P., Models for Estimating the Probabilistic Productivity of Automated Industrial Complexes, Vestn. Akad. Nauk Belarusi, 1995, no. 1, pp. 59–67.

    Google Scholar 

  5. Levin, A.A. and Pas’ko, N.I., Computing the Productivity of Automated Lines, Stanki Instrum., 1969, no. 8, pp. 8–10.

    Google Scholar 

  6. Dubois, D. and Forestier, J.-P., Productivité et en cours moyen d’un ensemble de deux machines séparées par une zone de stockage, RAIRO Automat., 1982, vol. 16, no. 2, pp. 105–132.

    MATH  Google Scholar 

  7. Li, J. and Meerkov, S.M., Production Systems Engineering, New York: Springer, 2009.

    Book  MATH  Google Scholar 

  8. Altiparmak, A., Bugak, A., and Dengiz, B., Optimization of Buffer Sizes in Assembly Systems Using Intelligent Techniques, Proc. 2002 Winter Simulat. Conf., 2002, pp. 1157–1162.

    Chapter  Google Scholar 

  9. D’Souza, K. and Khator, S., System Reconfiguration to Avoid Deadlocks in Automated Manufacturing Systems, Comput. Indust. Eng., 1997, vol. 32, pp. 445–465.

    Article  Google Scholar 

  10. Hamada, M., Martz, H., Berg, E., and Koehler, A., Optimizing the Product-Based Avaibility of a Buffered Industrial Process, Reliab. Eng. Syst. Safety, 2006, vol. 91, pp. 1039–1048.

    Article  Google Scholar 

  11. Abdul-Kader, W., Capacity Improvement of an Unreliable Production Line—An Analytical Approach, Comput. Oper. Res., 2006, vol. 33, pp. 1695–1712.

    Article  MATH  Google Scholar 

  12. Dolgui, A., Eremeev, A., Kolokolov, A., and Sigaev, V., A Genetic Algorithm for the Allocation of Buffer Storage Capacities in a Production Line with Unreliable Machines, J. Math. Modeling Algorithms, 2002, vol. 1, pp. 89–104.

    Article  MathSciNet  MATH  Google Scholar 

  13. Chehade, H., Yalaoui, F., Amodeo, L., and De Guglielmo, P., Optimisation multiobjectif pour le probl`eme de dimensionnement de buffers, J. Decision Syst., 2009, vol. 18, pp. 257–287.

    Article  Google Scholar 

  14. Zitzler, E., Laumanns, M., and Thiele, L., SPEA2: Improving the Strength Pareto Evolutionary Algorithm, Technic. Report 103, Comput. Eng. Commun. Networks Lab, Swiss Federal Institute Technol., Zurich, 2001.

    Google Scholar 

  15. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Trans. Evolut. Comput., 2002, vol. 6, no. 2, pp. 182–197.

    Article  Google Scholar 

  16. Cruz, F.R.B., Van Woensel, T., and Smith, J.M., Buffer and Throughput Trade-Offs in M/G/1/K queuing networks: A Bicriteria Approach, Int. J. Product. Econom., 2010, vol. 125, pp. 224–234.

    Article  Google Scholar 

  17. Sevast’yanov, B.A., The Problem of How Bunker Capacity Influences Averages Idle Time for an Automated Line of Machines, Teor. Veroyat. Primen., 1962, vol. 7, no. 4, pp. 438–447.

    Google Scholar 

  18. Ancelin, B. and Semery, A., Calcul de la productivité d’une ligne integrée de fabrication, RAIRO Autom., Productiq. Inform. Industrielle, 1987, vol. 21, pp. 209–238.

    Google Scholar 

  19. Terracol, C. and David, R., Performance d’une ligne composée de machines et de stocks intermédiaires, RAIRO Automatiq., Productiq. Informatiq. Industrielle, 1987, vol. 21, pp. 239–262.

    Google Scholar 

  20. Dolgui, A., Eremeev, A., Kovalyov, M.Y., and Sigaev, V., Complexity of Buffer Capacity Allocation Problems for Production Lines with Unreliable Machines, J. Math. Modell. Algorithms, 2013, vol. 12, pp. 155–165.

    Article  MathSciNet  MATH  Google Scholar 

  21. Brockhoff, D., Friedrich, T., and Neumann, F., Analyzing Hypervolume Indicator Based Algorithms, Proc. Parallel Probl. Solving from Nature—PPSN X: 10th Int. Conf. 2008, Berlin: Springer, 2008, vol. 5199, pp. 651–660.

    Google Scholar 

  22. Laumanns, M., Thiele, L., Zitzler, E., Welzl, E., and Deb, K., Running Time Analysis of a Multi- Objective Evolutionary Algorithm on a Simple Discrete Optimization Problem, Parallel Probl. Solving from Nature, 2002, Berlin: Springer, 2002, vol. 2439, pp. 44–53.

    Google Scholar 

  23. Belous, V.V., Groshev, S.V., Karpenko, A.P., and Shibitov, I.A., Software Systems for Evaluating the Quality of Pareto Approximations in Multicriterial Optimization Problems. A Survey, Nauka i Obrazovanie: FGBOU VPO “MGTU im. N.E. Baumana,” 2014, El. no. FS 77–48211, pp. 300–320.

    Google Scholar 

  24. Zitzler, E., Brockhoff, D., and Thiele, L., The Hypervolume Indicator Revisited: On the Design of Pareto-Compliant Indicators via Weighted Integration, Proc. Conf. Evolut. Multi-Criter. Optim. (EMO 2007), LNCS, Berlin: Springer, 2007, vol. 4403, pp. 862–876.

    Article  Google Scholar 

  25. Doob, J.L., Stochastic Processes, New York: Wiley, 1953. Translated under the title Veroyatnostnye protsessy, Moscow: Inostrannaya Literatura, 1956.

    MATH  Google Scholar 

  26. Gershwin, S.B. and Schick, I.C., Continuous Model of an Unreliable Two-Stage Material Flow System with a Finite Interstage Buffer, Report LIDS-R-1039, Massachusetts Inst. of Technology, Cambridge, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Dolgui.

Additional information

Original Russian Text © A.B. Dolgui, A.V. Eremeev, V.S. Sigaev, 2017, published in Avtomatika i Telemekhanika, 2017, No. 7, pp. 125–140.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgui, A.B., Eremeev, A.V. & Sigaev, V.S. Analysis of a multicriterial buffer capacity optimization problem for a production line. Autom Remote Control 78, 1276–1289 (2017). https://doi.org/10.1134/S0005117917070098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917070098

Keywords

Navigation