Skip to main content
Log in

Algorithm to control linear plants with measurable quantized output

  • Robust and Adaptive Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Consideration was given to the control of linear plants under external perturbations and measurement of the quantized plant output. The “consecutive compensator” method was used to design the controller. The obtained algorithm tracks the quantized plant output with respect to the reference signal with precision depending on the quantization step. The simulations illustrate the efficiency of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Widrow, B., Statistical Analysis of Amplitude-Quantized Sampled-Data Systems, Trans. AIEE, 1961, vol. 79, no. 2, pp. 555–567.

    Google Scholar 

  2. Gray, R.M. and Neuhoff, D.L., Quantization, IEEE Trans. Inf. Theory, 1988, vol. 44, pp. 2325–2383.

    Article  MATH  Google Scholar 

  3. Delchamps, D.F., Extracting State Information from a Quantized Output Record, Syst. Control Lett., 1989, vol. 13, pp. 365–372.

    Article  MATH  Google Scholar 

  4. Baillieul, J., Feedback Coding for Information-Based Control: Operating Near the Data Rate Limit, in Proc. 41st IEEE Conf. Decision Control, ThP02-6, Las Vegas, Nevada, USA, 2002, pp. 3229–3236.

    Google Scholar 

  5. Tou, J.T., Optimum Design of Digital Control Systems, New York: Academic, 1963.

    MATH  Google Scholar 

  6. Lewis, J.B. and Tou, J.T., Optimum Sampled-Data Systems with Quantized Control Signals, Trans. AIEE, 1965, vol. 82, no. 2, pp. 195–201.

    Google Scholar 

  7. Larson, R.E., Optimum Quantization in Dynamic Systems, IEEE Trans. Autom. Control, 1967, vol. 12, pp. 162–168.

    Article  Google Scholar 

  8. Golding, L.S. and Schultheiss, P.M., Study of an Adaptive Quantizer, Proc. IEEE, 1967, vol. 55, no. 3, pp. 293–297.

    Article  Google Scholar 

  9. Goodman, D.J. and Gersho, A., Theory of an Adaptive Quantizer, IEEE Trans. Commun., 1974, vol. COM-22, no. 8, pp. 1037–1045.

    Article  Google Scholar 

  10. Zhang, S.D. and Lockhart, G.B., Design and Simulation of an Efficient Adaptive Delta Modulation Embedded Coder, IEE Proc. Vis. Image Signal Process., 1995, vol. 142, no. 3, pp. 155–160.

    Article  Google Scholar 

  11. Zierhofer, C.M., Adaptive Sigma-Delta Modulation with One-Bit Quantization, IEEE Trans. Circuits Syst. II, 2000, vol. 47, no. 5, pp. 408–415.

    Article  Google Scholar 

  12. Venayagamoorthy, G.K. and Zha, W., Comparison of Nonuniform Optimal Quantizer Designs for Speech Coding with Adaptive Critics and Particle Swarm, IEEE Trans. Industry, 2007, vol. 43, no. 1, pp. 238–244.

    Article  Google Scholar 

  13. Gomez-Estern, F., Canudas de Wit, C., Rubio, F., et al., Adaptive Delta-Modulation Coding for Networked Controlled Systems, in Proc. Am. Control. Conf., New York, USA, 2007.

    Google Scholar 

  14. Andrievsky, B., Fradkov, A.L., and Peaucelle, D., State Estimation over the Limited-band Communication Channel for Pitch Motion Control of LAAS Helicopter Benchmark, in Proc. 17th IFAC Symp. Automat. Control. Aerospace (ACA’2007), Toulouse, France, 2007.

    Google Scholar 

  15. Zheng, J., Duni, E.R., and Rao, B.D., Analysis of Multiple-Antenna Systems with Finite-Rate Feedback Using High-Resolution Quantization Theory, IEEE Trans. Signal Process., 2007, vol. 55, no. 4, pp. 1461–1475.

    Article  MathSciNet  Google Scholar 

  16. Liberzon, D., Hybrid Feedback Stabilization of Systems with Quantized Signals, Automatica, 2003, vol. 39, pp. 1543–1554.

    Article  MathSciNet  MATH  Google Scholar 

  17. Brockett, R.W. and Liberzon, D., Quantized Feedback Stabilization of Linear Systems, IEEE Trans. Autom. Control, 2000, vol. 45, pp. 1279–1289.

    Article  MathSciNet  MATH  Google Scholar 

  18. Sharon, Y. and Liberzon, D., Input to State Stabilizing Controller for Systems with Coarse Quantization, IEEE Trans. Autom. Control, 2012, vol. 57, no. 4, pp. 830–844.

    Article  MathSciNet  Google Scholar 

  19. Tsykunov, A.M., Robastnoe upravlenie s kompensatsiei vozmushchenii (Robust Control with Compensation of Perturbations), Moscow: Fizmatlit, 2012.

    Google Scholar 

  20. Furtat, I.B., Fradkov, A.L., and Liberzon, D., Robust Control with Compensation of Disturbances for Systems with Quantized Output, in Proc. 19th World Cong. Int. Federation of Automatic Control, Cape Town, South Africa, August 24–29, 2014, pp. 730–735.

    Google Scholar 

  21. Bobtsov, A.A., Robust Output-Control for a Linear System with Uncertain Coefficients, Autom. Remote Control, 2002, vol. 63, no. 11, pp. 1794–1802.

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, W., DC Motor Parameter Identification Using Speed Step Responses, in Proc. 2010 Am. Control Conf., Baltimore, USA, 2010, pp. 1937–1941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Margun.

Additional information

Original Russian Text © A.A. Margun, A.A. Bobtsov, I.B. Furtat, 2017, published in Avtomatika i Telemekhanika, 2017, No. 5, pp. 71–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margun, A.A., Bobtsov, A.A. & Furtat, I.B. Algorithm to control linear plants with measurable quantized output. Autom Remote Control 78, 826–835 (2017). https://doi.org/10.1134/S0005117917050058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917050058

Keywords

Navigation