Skip to main content
Log in

Control for a system of linear agents based on a high order adaptation algorithm

  • Control in Social Economic Systems, Medicine, and Biology
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We solve the problem of synchronizing a network of linear agents with unknown parameters and unknown network topology given that the Laplacian that defines it has no complex eigenvalues. To solve this problem, we use a modified high order adaptation algorithm. We obtain conditions for reaching consensus with the proposed algorithm. We show modeling results that demonstrate the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amelina, N.O., Anan’evskii, M.S., Andrievskii, B.R., et al., Problemy setevogo upravleniya (Network Control Problems), Fradkov, A.L., Ed., Moscow–Izhevsk: Izhevsk. Inst. Comp. Issled., 2015.

  2. Cheng, Z., Zhang, H.-T., and Fan, M.-C., Consensus and Rendezvous Predictive Control for Multi-agent Systems with Input Constraints, 33rd Chinese Control Conf. (CCC), 2014, pp. 1438–1443.

    Google Scholar 

  3. Wu, Z., Guan, Z., Wu, X., and Li, T., Consensus Based Formation Control and Trajectory Tracing of Multi-Agent Robot Systems, J. Intelligent Robot. Syst., 2007, vol. 48, no. 3, pp. 397–410.

    Article  Google Scholar 

  4. Amelina, N., Fradkov, A., Jiang, Y., and Vergados, D.J., Approximate Consesus in Stochastic Networks with Application to Load Balancing, IEEE Trans. Inform. Theory, 2015, vol. 61, no. 4, pp. 1739–1752.

    Article  MathSciNet  Google Scholar 

  5. Leonard, N.E. and Fiorelli, E., Virtual Leaders, Artificial Potentials, and Coordinated Control of Groups, Proc. 40 IEEE Conf. Decision Control, 2001, pp. 2968–2973.

    Google Scholar 

  6. Amelina, N.O., Multiagent Technologies, Adaptation, Self-Organization, and Reaching Consensus, Stokhast. Optim. Informat., 2011, vol. 7, no. 1, pp. 149–185.

    Google Scholar 

  7. Olfati-Saber, R. and Murray, R., Consensus Problems in Networks of Agents with Switching Topology and Time-Delays, IEEE Trans. Autom. Control, 2004, vol. 49, no. 9, pp. 1520–1533.

    Article  MathSciNet  Google Scholar 

  8. Ren, W. and Beard, R.W., Distributed Consensus in Multi-vehicle Cooperative Control, London: Springer-Verlag, 2008.

    Book  MATH  Google Scholar 

  9. Olfati-Saber, R., Fax, A., and Murray, R., Consensus and Cooperation in Networked Multi-agent Systems, Proc. IEEE, 2007, vol. 95, no. 1, pp. 215–233.

    Article  Google Scholar 

  10. Agaev, R.P. and Chebotarev, P.Yu., Coordination in Multiagent Systems and Laplacian Spectra of Digraphs, Autom. Remote Control, 2009, vol. 70, no. 3, pp. 469–483.

    Article  MathSciNet  MATH  Google Scholar 

  11. Fradkov, A.L., Kiberneticheskaya fizika (Cybernetic Physics), St. Petersburg: Nauka, 2003.

    Google Scholar 

  12. Gazis, D.C., Herman, R., and Rothery, R.W., Nonlinear Follow-the-Leader Models of Traffic Flow Operations Research, INFORMS, 1961, no. 9, pp. 545–567.

    MATH  Google Scholar 

  13. Chandler, R.E., Herman, R., and Montroll, E.W., Traffic Dynamics: Studies in Car Following, Oper. Res. Informs., 1958, no. 6, pp. 165–184.

    Article  MathSciNet  Google Scholar 

  14. Newell, G.F., Nonlinear Effects in the Dynamics of Car Following, Oper. Res., 1961, vol. 9, no. 2, pp. 209–229.

    Article  MATH  Google Scholar 

  15. Agaev, R.P. and Chebotarev, P.Yu., The Matrix of Maximal Outgoing Forests of a Digraph and Its Applications, Autom. Remote Control, 2000, vol. 61, no. 9, pp. 1424–1450.

    MathSciNet  MATH  Google Scholar 

  16. Agaev, R.P. and Chebotarev, P.Yu., Spanning Forests of a Digraph and Their Applications, Autom. Remote Control, 2001, vol. 62, no. 3, pp. 443–466.

    Article  MathSciNet  MATH  Google Scholar 

  17. Fax, J.A. and Murray, R.M., Information Flow and Cooperative Control of Vehicle Formations, IEEE Trans. Autom. Control, 2004, no. 8, pp. 1465–1476.

    Article  MathSciNet  Google Scholar 

  18. Proskurnikov, A.V., The Popov Criterion for Consensus Between Delayed Agents, Proc. 9 IFAC Nonlinear Control Syst. Sympos. NOLCOS-2013, Toulouse, France, pp. 693–698.

  19. Li, Z., Duan, Z., and Chen, G., Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint, IEEE Transact. Circuits Systems I, Regular Papers, 2010, no. 1, pp. 213–224.

    MathSciNet  Google Scholar 

  20. Polyak, B.T. and Tsypkin, Ya.Z., Stability and Robust Stability of Uniform System, Autom. Remote Control, 1996, vol. 57, no. 11, pp. 1606–1617.

    MATH  Google Scholar 

  21. Hara, S., Shimizu, H., and Kim, T.-H., Consensus in Hierarchical Multi-agent Dynamical Systems with Low-rank Interconnections: Analysis of Stability and Convergence Rates, Am. Control Conf., 2009, pp. 5192–5197.

    Google Scholar 

  22. Proskurnikov, A.V., Frequency-Domain Criteria for Consensus in Multiagent Systems with Nonlinear Sector-shaped Couplings, Autom. Remote Control, 2014, vol. 75, no. 11, pp. 1982–1995.

    Article  MathSciNet  MATH  Google Scholar 

  23. Godsil, C. and Royle, G., Algebraic Graph Theory, New York: Springer-Verlag, 2001.

    Book  MATH  Google Scholar 

  24. Tomashevich, S. and Andrievsky, B., Stability and Performance of Networked Control of Quadrocopters Formation Flight, Proc. 6 Int. Congr. Ultra Modern Telecommun. Control Syst. Workshops (ICUMT 2014), St. Petersburg, Russia, 2014, pp. 331–336.

    Google Scholar 

  25. Furtat, I.B., Adaptive Control for a Dynamic Network with Linear Subsystems, Vestn. Astrakhan. Gos. Tekh. Univ., Ser. Upravlen., Vychisl. Tekh. Informatika, 2012, no. 1, pp. 69–78.

    Google Scholar 

  26. Chen, Y. and Yuping Tian, Y., Cooperative Control of Multi-agent Moving Along a Set of Given Curves, J. Syst. Sci. Complex., 2011, vol. 24, pp. 631–646.

    Article  MathSciNet  MATH  Google Scholar 

  27. Selivanov, A., Fradkov, A.L., and Junessov, I., Robust and Adaptive Passification Based Consensus Control of Dynamical Networks, IFAC Int. Workshop Adapt. Learn. Control Signal Proc., 2013, pp. 707–711.

    Google Scholar 

  28. Parsegov, S.E., Joining Coordinates and Hierarchical Algorithms in the Problem of Equidistant Location of Agents on a Segment, Upravlen. Bol’shimi Sist., 2012, no. 39, pp. 264–287.

    Google Scholar 

  29. Dzhunusov, I.A. and Fradkov, A.L., Synchronization in Networks of Linear Agents with Output Feedbacks, Autom. Remote Control, 2011, vol. 72, no. 8, pp. 1615–1626.

    Article  MathSciNet  MATH  Google Scholar 

  30. Furtat, I.B., Consensus Output Control for a Linear Dynamical Network with Disturbance Compensation, Mekhatronika, Avtomatiz., Upravlen., 2011, no. 4, pp. 12–18.

    Google Scholar 

  31. Li, Z., Ren, W., Liu, X., and Fu, M., Consensus of Multi-Agent Systems With General Linear and Lipschitz Nonlinear Dynamics Using Distributed Adaptive Protocols, IEEE Transact. Automat. Control, 2012, vol. 58, no. 7, pp. 1786–1791.

    Article  MathSciNet  Google Scholar 

  32. Li, Z., Liu, X., Ren, W., and Xie, L., Distributed Consensus of Linear Multi-Agent Systems with Adaptive Dynamic Protocols, Automatica, 2013, vol. 49, no. 7, pp. 1986–1995.

    Article  MathSciNet  Google Scholar 

  33. Selivanov, A.A., Control over Synchronization of Networks with Nonlinearities and Delayed Connections, Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 2014, no. 1 (3), pp. 265–271.

    Google Scholar 

  34. Hara, S. and Tsubakino, D., Eigenvector-Based Intergroup Connection of Low Rank for Hierarchical Multi-agent Dynamical Systems, Syst. Control Lett., 2012, vol. 61, no. 2, pp. 354–361.

    Article  MathSciNet  MATH  Google Scholar 

  35. Morse, A.S., High-order Parameter Tuners for the Adaptive Control of Nonlinear Systems, in Systems, Models and Feedback: Theory Appl., Isidori, A. and Tarn, T.J., Eds., Basel: Birkhauser, 1992, pp. 339–364.

    Chapter  Google Scholar 

  36. Tsykunov, A.M., A Modified High-order Adaptive Output Feedback Control Algorithm for Linear Plants, Autom. Remote Control, 2006, vol. 67, no. 8, pp. 1311–1321.

    Article  MathSciNet  MATH  Google Scholar 

  37. Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control over Complex Dynamical Systems), St. Petersburg: Nauka, 2000.

    Google Scholar 

  38. Nikiforov, V.O. and Fradkov, A.L., Adaptive Control Schemes with Extended Error, Autom. Remote Control, 1994, vol. 55, no. 9, pp. 1239–1255.

    MathSciNet  MATH  Google Scholar 

  39. Chung, F.R.K., Spectral Graph Theory, Ser. Regional Conference Series in Mathematics, Providence: Am. Math. Soc., 1997, vol. 92.

    Google Scholar 

  40. Tomashevich, S.I., Stability of Multiagent Linear Scalar Systems and Its Dependence on the Graph of Connections, Nauch.-tekhn. Vestn. Inform. Tekhnol., Mekh. Optiki, 2014, vol. 14, no. 2, pp. 72–78.

    Google Scholar 

  41. Furtat, I.B. and Tsykunov, A.M., A Modified Algorithm of High Order Adaptation for Systems with State Delay, Vestn. Astrakhan. Gos. Tekh. Univ., 2006, no. 1, pp. 24–33.

    Google Scholar 

  42. Atassi, A.N. and Khalil, H.K., A Separation Principle for the Stabilization of Class of Nonlinear Systems, IEEE Trans. Autom. Control, 1999, vol. 44, no. 9, pp. 1672–1687.

    Article  MathSciNet  MATH  Google Scholar 

  43. Fax, J.A., Optimal and Cooperative Control of Vehicle Formations, PhD Dissertation, California Inst. Technol., Pasadena, CA, 2002, pp. 55–58.

    Google Scholar 

  44. Amelin, K., Tomashevich, S., and Andrievsky, B., Recursive Identification of Motion Model Parameters for Ultralight UAV, IFAC-PapersOnLine 1st IFAC Conf. Modell., Identificat. Control Nonlin. Syst. (MICNON 2015), Russia, St. Petersburg, 2015, vol. 48, no. 11, pp. 233–237.

    Google Scholar 

  45. Fradkov, A.L. and Furtat, I.B., Robust Control for a Network of Electric Power Generators, Autom. Remote Control, 2013, vol. 74, no. 11, pp. 18851–1862.

    Article  MathSciNet  MATH  Google Scholar 

  46. Furtat, I.B. and Fradkov, A.L., Robust Control of Multi-Machine Power Systems with Compensation of Disturbances, Electr. Power Energy Syst., 2015, no. 73, pp. 584–590.

    Article  Google Scholar 

  47. Furtat, I.B., Robust Control for a Certain Class of Nonminimally–Phase Dynamical Networks, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2014, no. 1, pp. 35–48.

    MathSciNet  Google Scholar 

  48. Brusin, V.A., On a Class of Singular Perturbed Adaptive Systems, Autom. Remote Control, 1995, vol. 56, no. 4, pp. 552–559.

    MathSciNet  MATH  Google Scholar 

  49. Furtat, I.B. and Tsykunov, A.M., Adaptive Control of Plants of Unknown Relative Degree, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 1076–1084.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Tomashevich.

Additional information

Original Russian Text © S.I. Tomashevich, 2017, published in Avtomatika i Telemekhanika, 2017, No. 2, pp. 99–114.

This paper was recommended for publication by A.A. Fradkov, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomashevich, S.I. Control for a system of linear agents based on a high order adaptation algorithm. Autom Remote Control 78, 276–288 (2017). https://doi.org/10.1134/S0005117917020072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917020072

Keywords

Navigation