Skip to main content
Log in

Pareto suboptimal controllers against coalitions of disturbances

  • Linear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider a multi-criteria problem of suppressing disturbances with linear feedback with respect to the state or output measured with noise. We assume that the system has N potentially possible inputs for disturbances from given classes, and the criteria are induced norms of operators generated by the system from the corresponding input to the common target output. We obtain necessary Pareto optimality conditions. We show that based on scalar optimization of the suppression level for the disturbances that act on all inputs we can synthesize Pareto suboptimal controllers whose relative losses compared to Pareto optimal controllers do not exceed 1 − \(\sqrt N /N\). Our results generalize to the case when disturbances from different classes may form coalitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mäkilä, P.M., On Multiple Criteria Stationary Linear Quadratic Control, IEEE Trans. Autom. Control, 1989, vol. 34, no. 12, pp. 1311–1313.

    Article  MathSciNet  MATH  Google Scholar 

  2. Khargonekar, P.P. and Rotea, M.A., Multiple Objective Optimal Control of Linear Systems: The Quadratic Norm Case, IEEE Trans. Autom. Control, 1991, vol. 36, no. 1, pp. 14–24.

    Article  MathSciNet  MATH  Google Scholar 

  3. Hindi, H.A., Hassibi, B., and Boyd, S.P., Multiobjective H 2/H -Optimal Control via Finite Dimensional Q-Parametrization and Linear Matrix Inequalities, Proc. 1998 Am. Control Conf., Philadelphia, USA, 1998, pp. 3244–3249.

    Google Scholar 

  4. Scherer, C., Gahinet, P., and Chilali, M., Multiobjective Output-Feedback Control via LMI Optimization, IEEE Trans. Autom. Control, 1997, vol. 42, no. 7, pp. 896–911.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernstein, D.S. and Haddad, W.M., LQG Control with an H Performance Bound: A Riccati Equation Approach, IEEE Trans. Autom. Control, 1989, vol. 34, no. 3, pp. 293–305.

    Article  MathSciNet  MATH  Google Scholar 

  6. Khargonekar, P.P. and Rotea, M.A., Mixed H 2/H Control: A Convex Optimization Approach, IEEE Trans. Autom. Control, 1991, vol. 36, no. 7, pp. 824–831.

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhou, K., Glover, K., Bodenheimer, B., and Doyle, J., Mixed H 2 and H Performance Objectives I: Robust Performance Analysis, IEEE Trans. Autom. Control, 1994. vol. 39, no. 8, pp. 1564–1574.

    Google Scholar 

  8. Doyle, J., Zhou, K., Glover, K., and Bodenheimer, B., Mixed H 2 and H Performance Objectives II: Optimal Control, IEEE Trans. Autom. Control, 1994, vol. 39, no. 8, pp. 1575–1587.

    Article  MathSciNet  MATH  Google Scholar 

  9. Scherer, C., Mixed H 2/H Control, in Trends in Control. A European Perspective, Isidori, A., Ed., Berlin: Springer-Verlag, 1995, pp. 173–216.

    Chapter  Google Scholar 

  10. Chen, X. and Zhou, K., Multiobjective H 2/H Control Design, SIAM J. Control Optim., 2001, vol. 40, no. 2, pp. 628–660.

    Article  MathSciNet  MATH  Google Scholar 

  11. Takahashiy, R.H.C., Palharesz, R.M., Dutray, D.A., and Goncalves, L.P.S., Estimation of Pareto Sets in the Mixed H 2/H Control Problem, Int. J. Syst. Sci., 2004, vol. 35, no. 1, pp. 55–67.

    Article  MathSciNet  Google Scholar 

  12. Molina-Cristuba, A., Griffin, I.A., Fleming, P.J., and Owens, D.H., Linear Matrix Inequalities and Evolutionary Optimization in Multiobjective Control, Int. J. Syst. Sci., 2006, vol. 37, no. 8, pp. 513–522.

    Article  MathSciNet  MATH  Google Scholar 

  13. Balandin, D.V., Bolotnik, N.N., and Pilkey, W.D., Optimal Protection from Ipmact, Shock, and Vibration, Amsterdam: Gordon Breach Sci. Publish., 2001.

    Google Scholar 

  14. Pilkey, W.D., Balandin, D.V., Bolotnik, N.N., Crandall, J.R., and Purtsezov, S.V., Injury Biomechanics and Control: Optimal Protection from Impact, Hoboken, New Jersey: Wiley, 2010.

    Google Scholar 

  15. Iwasaki, T., Robust Performance Analysis for Systems with Structured Uncertainty, Int. J. Robust Nonlin. Control, 1996, vol. 6, pp. 85–99.

    Article  MathSciNet  MATH  Google Scholar 

  16. Balandin, D.V. and Kogan, M.M., LMI Based Output-Feedback Controllers: γ 0-Optimal Versus Linear- Quadratic, Proc 17th IFAC World Congr., Seoul, Korea, 2008, pp. 9905–9909.

    Google Scholar 

  17. Balandin, D.V. and Kogan, M.M., γ-Optimal Output Control Laws, Autom. Remote Control, 2008, vol. 69, no. 6, pp. 911–919.

    Article  MathSciNet  MATH  Google Scholar 

  18. Khargonekar, P.P., Nagpal, K.M., and Poolla, K.R., H Control with Transients, SIAM J. Control Optim., 1991, vol. 29, no. 6, pp. 1373–1393.

    Article  MathSciNet  MATH  Google Scholar 

  19. Nagpal, K.M. and Khargonekar, P.P., Filtering and Smoothing in an H Setting, IEEE Trans. Autom. Control, 1991, vol. 36, no. 2, pp. 152–166.

    Article  MathSciNet  MATH  Google Scholar 

  20. Uchida, K., Kojima, A., and Fujita, M., H Control Attenuating Initial-State Uncertainties, Int. J. Control, 1997, vol. 65, no. 2, pp. 245–252.

    Article  MathSciNet  MATH  Google Scholar 

  21. Balandin, D.V. and Kogan, M.M., LMI Based H -Optimal Control with Transients, Int. J. Control, 2010, vol. 83, no. 8, pp. 1664–1673.

    Article  MathSciNet  MATH  Google Scholar 

  22. Balandin, D.V. and Kogan, M.M., Generalized H -optimal Control as a Trade-off between the H - Optimal and γ-Optimal Controls, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 993–1010.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kogan, M.M., Design of Optimal and Robust Control with H /γ 0 Performance Criterion, Autom. Remote Control, 2016, vol. 77, no. 8, pp. 1317–1333.

    Article  MATH  Google Scholar 

  24. Kogan, M.M., Optimal Discrete-Time H /γ 0 Filtering and Control under Unknown Covariances, Int. J. Control, 2016, vol. 89, no. 4, pp. 691–700.

    Article  MathSciNet  MATH  Google Scholar 

  25. Gahinet, P. and Apkarian, P., A Linear Matrix Inequality Approach to H Control, Int. J. Robust Nonlin. Control, 1994, vol. 4, pp. 421–448.

    Article  MathSciNet  MATH  Google Scholar 

  26. Iwasaki, T. and Skelton, R.E., All Controllers for the General H Control Problem: LMI Existence Conditions and State Space Formulas, Automatica, 1994, vol. 30, pp. 1307–1317.

    Article  MathSciNet  MATH  Google Scholar 

  27. Balandin, D.V. and Kogan, M.M., Sintez zakonov upravleniya na osnove lineinykh matrichnykh neravenstv (Synthesis of Control Laws Based on Linear Matrix Inequalities), Moscow: Fizmatlit, 2007.

    Google Scholar 

  28. Wilson, D.A., Convolution and Hankel Operator Norms for Linear Systems, IEEE Trans. Autom. Control, 1989, vol. 34, pp. 94–97.

    Article  MathSciNet  MATH  Google Scholar 

  29. Rotea, M.A., The Generalized H 2 Control Problem, Automatica, 1993, vol. 29, no. 2, pp. 373–385.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Balandin.

Additional information

Original Russian Text © D.V. Balandin, M.M. Kogan, 2017, published in Avtomatika i Telemekhanika, 2017, No. 2, pp. 3–26.

This paper was recommended for publication by B.T. Polyak, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balandin, D.V., Kogan, M.M. Pareto suboptimal controllers against coalitions of disturbances. Autom Remote Control 78, 197–216 (2017). https://doi.org/10.1134/S0005117917020011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917020011

Keywords

Navigation