Advertisement

Automation and Remote Control

, Volume 78, Issue 1, pp 50–66 | Cite as

Stochastic and fuzzy ordering with the method of minimal transformations

  • A. E. LepskiyEmail author
Stochastic Systems, Queueing Systems

Abstract

We analyze the methods of stochastic and fuzzy comparison and ordering of random and fuzzy variables. We find simple formulas for computing a number of comparisons and establish the interrelations between various comparisons. We propose and study a new approach to comparing histograms of discrete random (fuzzy) variables based on computing a “directed” minimal transformation that maps one of the compared variables into another. We apply the method of minimal transformations to solving the problem of optimal reduction of discrete random (fuzzy) variables to unimodal form which is considered in the context of ranking the histograms of universities constructed by USE (Unified State Exam) results. We propose a model of “perfect” admission for high school graduates and show that the distribution of admitted graduates to a university in this model will be unimodal under sufficiently general assumptions on the preference function.

Key words

stochastic orders minimal transformation of histograms unimodality of histograms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dalal, N. and Triggs, B., Histograms of Oriented Gradients for Human Detection, Proc. 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR’05), 2005, vol. 1, pp. 886–893.CrossRefGoogle Scholar
  2. 2.
    Lowe, D.G., Object Recognition from Local Scale-Invariant Features, Int. Conf. on Computer Vision, Corfu, Greece, 1999, pp. 1150–1157.Google Scholar
  3. 3.
    Shnol’, S.E., Kolombet, V.A., Pozharskii, E.V., et al., On the Implementation of Discrete States during Fluctuations in Macroscopic Processes, Usp. Phiz. Nauk, 1998, vol. 168, no. 10, pp. 1129–1140.CrossRefGoogle Scholar
  4. 4.
    Zolotarev, V.M., Probabilistic Metrics, Teor. Veroyat. Primen., 1983, vol. 28, no. 2, pp. 264–287.zbMATHGoogle Scholar
  5. 5.
    Navarro, J. and Rubio, R., Comparisons of Coherent Systems Using Stochastic Precedence, TEST, 2010, vol. 19, no. 3, pp. 469–486.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Stochastic Orders in Reliability and Risk, Lecture Notes in Statistics, vol. 208, Berlin: Springer, 2013.Google Scholar
  7. 7.
    Kottas, A., Bayesian Semiparametric Modeling for Stochastic Precedence, with Applications in Epidemiology and Survival Analysis, Lifetime Data Anal., 2011, no. 17, pp. 135–155.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bawa, V.S., Optimal Rules for Ordering Uncertain Prospects, J. Financial Econ., 1975, vol. 2, no. 1, pp. 95–121.CrossRefGoogle Scholar
  9. 9.
    Shorrocks, A.F., Ranking Income Distributions, Economica, 1983, vol. 50, pp. 3–17.CrossRefGoogle Scholar
  10. 10.
    Rothschild, M. and Stiglitz, J.E., Some Further Results on the Measurement of Inequality, J. Econ. Theory, 1973, no. 6, pp. 188–204.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sen, A.K., On Economic Inequality, Oxford: Oxford Univ. Press, 1973.CrossRefGoogle Scholar
  12. 12.
    Fodor, J. and Roubens, M., Fuzzy Preference Modelling and Multicriteria Decision Support, Dordrecht: Kluwer, 1994.CrossRefzbMATHGoogle Scholar
  13. 13.
    Baas, S.M. and Kwakernaak, H., Rating and Ranking of Multiple-Aspect Alternatives Using Fuzzy Sets, Automatic, 1977, no. 13, pp. 47–58.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, X., Ruan, D., and Kerre, E.E., Mathematics of Fuzziness—Basic Issues, Berlin: Springer-Verlag, 2009.CrossRefzbMATHGoogle Scholar
  15. 15.
    Shaked, M. and Shanthikumar, J.G., Stochastic Orders, New York: Springer, 2007.CrossRefzbMATHGoogle Scholar
  16. 16.
    Aiche, F. and Dubois, D., An Extension of Stochastic Dominance to Fuzzy Random Variables, Comp. Intel. for Knowl.-Based Syst. Design, LNCS, 2010, vol. 6178, pp. 159–168.CrossRefGoogle Scholar
  17. 17.
    Piriyakumar, J.E.L. and Renganathan, N., Stochastic Orderings of Fuzzy Random Variables, Inf. Manage. Sci., 2001, vol. 12, no. 4, pp. 29–40.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lepskiy, A., On the Stability of Comparing Histograms with Help of Probabilistic Methods, Procedia Comput. Sci., Elsevier, 2014, vol. 31, pp. 597–605.CrossRefGoogle Scholar
  19. 19.
    Rubner, Y., Tomasi, C., and Guibas, L.J., The Earth Mover’s Distance as a Metric for Image Retrieval, Int. J. Comput. Vision, 2000, vol. 40, no. 2, pp. 99–121.CrossRefzbMATHGoogle Scholar
  20. 20.
    Vatnik, P.A., Teoriya riska (Risk Theory), St. Petersburg: SPbGIEU, 2009.Google Scholar
  21. 21.
    Pol’din, O.V. and Silaev, A.M., A Comparison of Educational Programs with USE Results of Admitted Students, Vopr. Obrazovaniya, 2011, no. 3, pp. 192–209.CrossRefGoogle Scholar
  22. 22.
    Montes, I., Miranda, E., and Montes, S., Stochastic Dominance with Imprecise Information, Comput. Statist. Data Anal., 2014, vol. 71, pp. 868–886.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ferson, S. and Tucker, W., Sensitivity Analysis Using Probability Bounding, Reliability Eng. Syst. Safety, 2006, vol. 91, no. 10–11, pp. 1435–1442.CrossRefGoogle Scholar
  24. 24.
    Boland, P.J., Singh, H., and Cukic, B., The Stochastic Precedence Ordering with Applications in Sampling and Testing, J. Appl. Probab., 2004, no. 41, pp. 73–82.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    De Schuymer, B., De Meyer, H., De Baets, B., and Jenei, S., On the Cycle-Transitivity of the Dice Model, Theor. Decision, 2003, vol. 54, no. 3, pp. 261–285.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Klement, E.P., Mesiar, R., and Pap, E., Triangular Norms, Dordrecht: Kluwer, 2000.CrossRefzbMATHGoogle Scholar
  27. 27.
    Arcones, M.A., Kvam, P.H., and Samaniego, F.J., Nonparametric Estimation of a Distribution Subject to a Stochastic Precedence Constraint, J. Am. Stat. Assoc., 2002, vol. 97, no. 457, pp. 170–182.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Shakhnov, I.F., Ranking Problems for Interval Values in Multicriterial Analysis of Complex Systems, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2008, no. 1, pp. 37–44.MathSciNetGoogle Scholar
  29. 29.
    Bronevich, A.G. and Rozenberg, I.N., Ranking Probability Measures by Inclusion Indices in the Case of Unknown Utility Function, Fuzzy Optim. Decision Making, 2014, vol. 13, no. 1, pp. 49–71.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Bobrov, R.A. and Lepskiy, A.E., Ranzhirovanie vuzov po ballam EGE metodami sravneniya nechetkikh chisel (Ranking Universities by USE Results with Fuzzy Numbers Comparison), WP7/2014/01, Moscow: HSE, 2014.Google Scholar
  31. 31.
    Adamo, J.M., Fuzzy Decision Trees, Fuzzy Sets Syst., 1980, no. 4, pp. 207–219.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Yager, R.R., A Procedure for Ordering Fuzzy Sets of the Unit Interval, Inf. Sci., 1981, vol. 24, pp. 143–161.CrossRefzbMATHGoogle Scholar
  33. 33.
    Kerre, E., The Use of Fuzzy Set Theory in Electrocardiological Diagnostics, in Approximate Reasoning in Decision-Analysis, Gupta, M. and Sanchez, E., Eds., Amsterdam: North-Holland, 1982, pp. 277–282.Google Scholar
  34. 34.
    Aleskerov, F.T., Khabina, E.L., and Shvarts, D.A., Binarnye otnosheniya, grafy i kollektivnye resheniya (Binary Relations, Graphs, and Collective Solutions), Moscow: Fizmatlit, 2012.Google Scholar
  35. 35.
    Podinovskii, V.V., Vvedenie v teoriyu vazhnosti kriteriev v mnogokriterial’nykh zadachakh prinyatiya reshenii (Introduction to the Theory of Criteria Importance in Multicriterial Decision Problems), Moscow: Fizmatlit, 2007.Google Scholar
  36. 36.
    Aleskerov, F.T., Chistyakov, V.V., and Kaliaguine, V.A., Social Threshold Aggregations, Social Choice Welfare, 2010, vol. 35, no. 4, pp. 627–646.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Kantorovich, L.V., On Mass Moving, Dokl. Akad. Nauk USSR, 1942, vol. 37, nos. 7–8, pp. 227–229.Google Scholar
  38. 38.
    Major, P., On the Invariance Principle for Sums of Independent, Identically Distributed Random Variables, J. Multivariate Anal., 1978, no. 8, pp. 487–501.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Bezdek, J.C., Spillman, B., and Spillman, R., A Fuzzy Relation Space for Group Decision Theory, Fuzzy Sets Syst., 1978, no. 1, pp. 255–268.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Kobzar’, A.I., Prikladnaya matematicheskaya statistika (Applied Mathematical Statistics), Moscow: Fizmatlit, 2006.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations