Advertisement

Automation and Remote Control

, Volume 78, Issue 1, pp 29–49 | Cite as

On Pareto set in control and filtering problems under stochastic and deterministic disturbances

  • D. V. BalandinEmail author
  • M. M. Kogan
Stochastic Systems, Queueing Systems

Abstract

We consider two-criteria control or filtering problems for linear systems, where one criterion is the level of suppression for Gaussian white noise with unknown covariance, and another is the level of suppression for a deterministic signal of bounded power. We define a new criterion, the level of suppression for stochastic and deterministic disturbances that act jointly in the general case on different inputs. This criterion is characterized in terms of solutions of Riccati equations or linear matrix inequalities. We establish that for the choice of optimal controller or filter with respect to this criterion relative losses with respect to each of the original criteria compared to Pareto optimal solutions do not exceed the value \(1 - {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 2}} \right. \kern-\nulldelimiterspace} 2}\) . We extend these results to dual control and filtering problems for systems with one input and two outputs, generalize them to the case of N criteria with loss estimate \(1 - {{\sqrt N } \mathord{\left/ {\vphantom {{\sqrt N } N}} \right. \kern-\nulldelimiterspace} N}\), and also apply them for systems with external and initial disturbances. We show a numerical example.

Key words

multi-criteria optimization Pareto set control filtering stochastic disturbances deterministic disturbances H-optimal solutions γ0-optimal solutions Pareto suboptimal solutions H2/H-norm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., State Space Solutions to Standard H 2 and H Control Problems, IEEE Trans. Automat. Control, 1989, vol. 34, pp. 831–847.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Vladimirov, I.G., Kurdyukov, A.P., and Semenov, A.V., Stochastic H -Optimization Problem, Dokl. Ross. Akad. Nauk, 1995, vol. 343, no. 5, pp. 607–609.zbMATHGoogle Scholar
  3. 3.
    Chaikovskii, M.M. and Kurdyukov, A.P., Strict Boundedness Criterion for Anisotropic Norm with a Given Value in Terms of Linear Matrix Inequalities, Dokl. Ross. Akad. Nauk, 2011, vol. 441, no. 3, pp. 318–321.Google Scholar
  4. 4.
    Zhou, K., Glover, K., Bodenheimer, B., and Doyle, J., Mixed H 2 and H Performance Objectives I: Robust Performance Analysis, IEEE Trans. Automat. Control, 1994, vol. 39, pp. 1564–1574.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Doyle, J., Zhou, K., Glover, K., and Bodenheimer, B., Mixed H 2 and H Performance Objectives II: Optimal Control, IEEE Trans. Automat. Control, 1994, vol. 39, pp. 1575–1587.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bernstein, D.S. and Haddad, W.M., LQG Control with an H Performance Bound: A Riccati Equation Approach, IEEE Trans. Automat. Control, 1989, vol. 34, pp. 293–305.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Haddad, W.M., Bernstein, D.S., and Mustafa, D., Mixed-Norm H 2/H -Regulation and Estimation: The Discrete-Time Case, Syst. Control Lett., 1991, vol. 16, pp. 235–247.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Khargonekar, P.P. and Rotea, M.A., Mixed H 2/H Control: A Convex Optimization Approach, IEEE Trans. Automat. Control, 1991, vol. 36, pp. 824–831.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yaesh, I. and Shaked, U., Game Theory Approach to State Estimation of Linear Discrete-Time Processes and Its Relation to H -Optimal Estimation, Int. J. Control, 1992, vol. 55, no. 6, pp. 1443–1452.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kaminer, I., Khargonekar, P.P., and Rotea, M.A., Mixed H 2/H Control for Discrete-Time Systems via Convex Optimization, Automatica, 1993, vol. 29, no. 1, pp. 57–70.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, X. and Zhou, K., Multiobjective H 2/H Control Design, SIAM J. Control Optim., 2001, vol. 40, no. 2, pp. 628–660.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Davis, L.D., Collins, E.G., and Haddad, W.M., Discrete-Time Mixed-Norm H 2/H Controller Synthesis, Optim. Control Appl. Methods, 1996, vol. 17, pp. 107–121.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Muradore, R. and Picci, G., Mixed H 2/H Control: The Discrete-Time Case, Syst. Control Lett., 2005, vol. 54, pp. 1–13.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Scherer, C., Mixed H 2/H Control, in Trends in Control: A European Perspective, Isidori, A., Ed., Berlin: Springer-Verlag, 1995, pp. 173–216.CrossRefGoogle Scholar
  15. 15.
    El Ghaoui, L. and Folcher, J.P., Multiobjective Robust Control of LTI Systems Subject to Unstructured Perturbations, Syst. Control Lett., 1996, vol. 28, pp. 23–30.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Scherer, C., Gahinet, P., and Chilali, M., Multiobjective Output-Feedback Control via LMI Optimization, IEEE Trans. Automat. Control, 1997, vol. 42, pp. 896–911.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mäkilä, P.M., On Muptiple Criteria Stationary Linear Quadratic Control, IEEE Trans. Automat. Control, 1989, vol. 34, pp. 1311–1313.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Khargonekar, P.P. and Rotea, M.A., Muptiple Objective Optimal Control of Linear Systems: The Quadratic Norm Case, IEEE Trans. Automat. Control, 1991, vol. 36, pp. 14–24.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hindi, H.A., Hassibi, B., and Boyd, S.P., Multiobjective H 2/H -Optimal Control via Finite Dimensional Q-Parametrization and Linear Matrix Inequalities, Proc. Am. Control Conf., Philadelphia, 1998, pp. 3244–3249.Google Scholar
  20. 20.
    Ostertag, E., An Improved Path-following Method for Mixed H 2/H Controller Design, IEEE Trans. Automat. Control, 2008, vol. 53, pp. 1967–1971.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Balandin, D.V. and Kogan, M.M., Pareto Suboptimal Solutions in Control and Filtering Problems under Multiple Deterministic and Stochastic Disturbances, Proc. Eur. Control Conf., Aalborg, 2016, pp. 2263–2268.Google Scholar
  22. 22.
    Kogan, M.M., Optimal Estimation and Filtration under Unknown Covariances of Random Factors, Autom. Remote Control, 2014, vol. 75, no. 11, pp. 1964–1981.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kogan, M.M., LMI Based Minimax Estimation and Filtering under Unknown Covariances, Int. J. Control, 2014, vol. 87, no. 6, pp. 1216–1226.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kogan, M.M., Optimal Discrete-Time H /γ 0 Filtering and Control under Unknown Covariances, Int. J. Control, 2016, vol. 89, no. 4, pp. 691–700.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Khargonekar, P.P., Nagpal, K.M., and Poolla, K.R., H Control with Transients, SIAM J. Control Optim., 1991, vol. 29, no. 6, pp. 1373–1393.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nagpal, K.M. and Khargonekar, P.P., Filtering and Smoothing in an H Setting, IEEE Trans. Autom. Control, 1991, vol. 36, no. 2, pp. 152–166.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Balandin, D.V. and Kogan, M.M., Generalized H -Optimal Control as a Trade-Off between the H - Optimal and γ-Optimal Controls, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 993–1010.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Balandin, D.V. and Kogan, M.M., LMI-based H -optimal Control with Transients, Int. J. Control, 2010, vol. 83, no. 8, pp. 1664–1673.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Balandin, D.V., Kogan, M.M., Krivdina, L.N., and Fedyukov, A.A., Design of Generalized Discrete- Time H -optimal Control over Finite and Infinite Intervals, Autom. Remote Control, 2014, vol. 75, no. 1, pp. 1–17.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Boyd, S., El Ghaoui, L., Feron, E., et al., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.CrossRefzbMATHGoogle Scholar
  31. 31.
    Balandin, D.V. and Kogan, M.M., Sintez zakonov upravleniya na osnove lineinykh matrichnykh neravenstv (Design of Control Laws Based on Linear Matrix Inequalities), Moscow: Fizmatlit, 2007.Google Scholar
  32. 32.
    Wilson, D.A., Convolution and Hankel Operator Norms for Linear Systems, IEEE Trans. Automat. Control, 1989, vol. 34, pp. 94–97.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rotea, M.A., The Generalized H 2 Control Problem, Automatica, 1993, vol. 29, no. 2, pp. 373–385.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Balandin, D.V. and Kogan, M.M., Linear-Quadratic and γ-Optimal Output Control Laws, Autom. Remote Control, 2008, vol. 69, no. 6, pp. 911–919.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with Non-Unique Equilibria States), Moscow: Nauka, 1978.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Lobachevsky Nizhny Novgorod State UniversityNizhny NovgorodRussia
  2. 2.Nizhny Novgorod State University of Architecture and Civil EngineeringNizhny NovgorodRussia

Personalised recommendations