Skip to main content
Log in

A new effective dynamic program for an investment optimization problem

  • Control in Social Economic Systems, Medicine, and Biology
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

After a series of publications of T.E. O’Neil et al. (e.g. in 2010), dynamic programming seems to be the most promising way to solve knapsack problems. Some techniques are known to make dynamic programming algorithms (DPA) faster. One of them is the graphical method that deals with piecewise linear Bellman functions. For some problems, it was previously shown that the graphical algorithm has a smaller running time in comparison with the classical DPA and also some other advantages. In this paper, an exact graphical algorithm (GrA) and a fully polynomial-time approximation scheme based on it are presented for an investment optimization problem having the best known running time. The algorithms are based on new Bellman functional equations and a new way of implementing the GrA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, X.M., Fang, S.-C., Tian, Y., and Guo, X.L., Expanded Model of the Project Portfolio Selection Problem with Divisibility, Time Profile Factors and Cardinality Constraints, J. Operat. Res., 2004, doi:10.1057/jors.2014.75.

    Google Scholar 

  2. Dolgui, A. and Proth, J-M., Supply Chain Engineering: Useful Methods and Techniques, Berlin: Springer-Verlag, 2010.

    Book  Google Scholar 

  3. Tavana, M., Khalili-Danghani, K., and Abtahi, A.R., A Fuzzy Multidimensional Multiple-Choice Model for Project Portfolio Selection Using an Evolutionary Algorithm, Ann. Operat. Res., 2013, vol. 206, no. 1, pp. 449–483.

    Article  MATH  Google Scholar 

  4. Chang, P.-T. and Lee, J.-H., A Fuzzy DEA and Knapsack Formulation Integrated Model for Project Selection, Comput. Operat. Res., 2012, vol. 30, pp. 112–125.

    Article  MathSciNet  MATH  Google Scholar 

  5. Beaujon, G.J., Marin, S.P., and McDonald, G.C., Balancing and Optimizing a Portfolio of R&D Projects, Nav. Res. Logist., 2001, vol. 48, pp. 18–40.

    Article  MathSciNet  MATH  Google Scholar 

  6. Mavrotas, G., Diakoulaki, D., and Kourentzis, A., Selection Among Ranked Projects under Segmentation, Policy and Logical Constraints, Eur. J. Operat. Res., 2008, vol. 187, no. 1, pp. 177–192.

    Article  MATH  Google Scholar 

  7. Herbots, J., Herroelen, W., and Leus, R., Dynamic Order Acceptance and Capacity Planning on a Single Bottleneck Resource, Nav. Res. Logist., 2007, vol. 54, pp. 874–889.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kellerer, H. and Pferschy, U., Improved Dynamic Programming in Connection with a FPTAS for the Knapsack Problem, J. Combinat. Optimiz., 2004, no. 8, pp 5–11.

    Article  MathSciNet  MATH  Google Scholar 

  9. Caprara, A., Kellerer, H., Pferschy, U., and Pisinger, D., Approximation Algorithms for Knapsack Problems with Cardinality Constraints, Eur. J. Operat. Res., 2000, vol. 123, no. 2, pp. 333–345.

    Article  MathSciNet  MATH  Google Scholar 

  10. Mastrolilli, M. and Hutter, M., Hybrid Rounding Techniques for Knapsack Problems, Discr. Appl. Math., 2006, vol. 154, no. 4, pp. 640–649.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bazgan, C., Hugot, H., and Vanderpoorten, D., Implementing an Effcient FPTAS for the 0-1 Multi-Objective Knapsack Problem, Eur. J. Operat. Res., 2009, vol. 198, no. 1, pp. 47–56.

    Article  MATH  Google Scholar 

  12. Sristava, V. and Bullo, F., Knapsack Problems with Sigmoid Utilities: Approximation Algorithms via Hybrid Optimization, Eur. J. Operat. Res., 2014, vol. 236, no. 2, pp. 488–498.

    Article  MathSciNet  MATH  Google Scholar 

  13. Guler, A., Nuriyev, U.G., Berberler, M.E., and Nurieva, F., Algorithms with Guarantee Value for Knapsack Problems, Optimization, 2012, vol. 61, no. 4, pp. 477–488.

    Article  MathSciNet  MATH  Google Scholar 

  14. Fortin, D. and Tseveendory, I., Piecewise Convex Maximization Approach to Multiknapsack, Optimization, 2009, vol. 58, no. 7, pp. 883–895.

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, F.L., Yen, Z., Hou, Y.H. and Ni, Y.X., Applications of AITechniques to Generation Planning and Investment, IEEE Power Engineering Society General Meeting, Denver, 2004, 936–940.

    Google Scholar 

  16. Kellerer, H., Pferschy, U., and Pisinger, D., Knapsack Problems, Berlin: Springer-Verlag, 2004.

    Book  MATH  Google Scholar 

  17. McLay, L.A. and Jacobson, S.H., Algorithms for the Bounded Set-up Knapsack Problem, Discr. Optimiz., 2007, vol. 4, pp. 206–412.

    Article  MathSciNet  MATH  Google Scholar 

  18. Shaw, D.X. and Wagelmans, A.P.M., An Algorithm for Single-Item Capacitated Economic Lot Sizing with Piecewise Linear Production Costs and General Holding Costs, Manage. Sci., 1998, vol. 44, no. 6, pp. 831–838.

    Article  MATH  Google Scholar 

  19. Kameshwaran, S. and Narahari, Y., Nonconvex Piecewise Linear Knapsack Problems, Eur. J. Operat. Res., 2009, vol. 192, pp. 56–68.

    Article  MathSciNet  MATH  Google Scholar 

  20. Gafarov, E.R., Dolgui, A., Lazarev, A.A., and Werner, F., A Graphical Approach to Solve an Investment Optimization Problem, J. Math. Model Algor., 2014, vol. 13, no. 4, pp. 597–614.

    Article  MathSciNet  MATH  Google Scholar 

  21. Posypkin, M.A. and Sigal, I.Kh., Speedup Estimates for Some Variants of the Parallel Implementations of the Branch-and-Bound Method, J. Math. Math. Physics, 2006, vol. 46, no. 12, pp. 2189–2202.

    MathSciNet  Google Scholar 

  22. O’Neil, E.T. and Kerlin, S., A Simple 2O(x) Algorithm for PARTITION and SUBSET SUM, 2010, http://www.lidi.info.unlp.edu.ar/WorldComp2011-Mirror/FCS8171.pdf.

    Google Scholar 

  23. Bar-Noy, A., Golin, M.J., and Zhang, Y., Online Dynamic Programming Speedups, J. Theory Comput. Syst., 2009, vol. 45, no 3, pp. 429–445.

    Article  MathSciNet  MATH  Google Scholar 

  24. Eppstein, D., Galil, Z., and Giancarlo, R., Speeding up Dynamic Programming, Proc. 29th Symp. Found. Comput. Sci., 1988.

    Google Scholar 

  25. Wagelmans, A.P.M. and Gerodimos, A.E., Improved Dynamic Programs for Some Batching Problems Involving the Maximum Lateness Criterion, Oper. Res. Lett., 2000, vol. 27, pp. 109–118.

    Article  MathSciNet  MATH  Google Scholar 

  26. Lazarev, A.A. and Werner, F., A Graphical Realization of the Dynamic ProgrammingMethod for Solving NP-hard Problems, Comput. Math. Appl., 2009, vol. 58, no. 4, pp. 619–631.

    Article  MathSciNet  MATH  Google Scholar 

  27. Aho, A.V., Hopcroft, J.E., and Ullman, J.D., Data Structures and Algorithms, London: Addison-Wesley, 1983.

    MATH  Google Scholar 

  28. Chubanov, S., Kovalyov, M.Y., and Pesch, E., An FPTAS for a Single-Item Capacitated Economic Lot-Sizing Problem with Monotone Cost Structure, Math. Program., 2006, vol. 106, pp. 453–466.

    Article  MathSciNet  MATH  Google Scholar 

  29. Gafarov, E.R., Dolgui, A., and Werner, F., A Graphical Approach for Solving Single Machine Scheduling Problems Approximately, Int. J. Production Res., 2014, vol. 52(13), pp. 3762–3777.

    Article  Google Scholar 

  30. Schemeleva, K., Delorme, X., Dolgui, A., et al., Lot-Sizing on a Single Imperfect Machine: ILP Models and FPTAS Extensions, Comput. Indust. Engin., 2013. vol. 65, no. 4, pp. 561–569.

    Article  Google Scholar 

  31. Gafarov, E.R., Lazarev, A.A., and Werner, F., Transforming a Pseudo-Polynomial Algorithm for the Single Machine Total Tardiness Problem into a Polynomial One, Ann. Operat. Res., 2012, vol. 196, pp. 247–261.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Gafarov.

Additional information

Original Russian Text © E.R. Gafarov, A. Dolgui, A.A. Lazarev, F. Werner, 2016, published in Avtomatika i Telemekhanika, 2016, No. 9, pp. 150–166.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gafarov, E.R., Dolgui, A., Lazarev, A.A. et al. A new effective dynamic program for an investment optimization problem. Autom Remote Control 77, 1633–1648 (2016). https://doi.org/10.1134/S0005117916090101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916090101

Navigation