Skip to main content
Log in

Hydraulic resistance coefficient identification in pipelines

  • Computer-Aided Information Control Systems, Process Control Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider an approach to identifying the hydraulic resistance coefficient for a segment of a magistral pipe in transporting hydrocarbon raw material. The considered identification problem reduces to a class of parametric optimal control problems, and we propose to use efficient numerical methods developed for first order finite-dimensional optimization problems to solve it. To this purpose, we derive formulas for components of the objective functional’s gradient in the space of the identified parameters. The resulting values for the vector being optimized can then be used to construct the identified function from some class of functions with interpolation and approximation methods. We also show the results of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guseinzade, M.A. and Yufin, V.A., Neustanovivsheesya dvizhenie nefti i gaza v magistral’nykh truboprovodakh (Non-Established Motion of Oil and Gas in Magistral Pipelines), Moscow: Nedra, 1981.

    Google Scholar 

  2. Charnyi, I.A., Neustanovivsheesya dvizhenie real’noi zhidkosti v trubakh (Non-Established Motion of Real Liquids in Pipes), Moscow: Nedra, 1975.

    Google Scholar 

  3. Aliev, R.A., Belousov, V.D., Nemudrov, A.G., et al., Truboprovodnyi transport nefti i gaza (Pipe Transport of Oil and Gas), Moscow: Nedra, 1988.

    Google Scholar 

  4. Mikhailov, V.V., A Refined Formula for Computing the Hydraulic Resistance Coefficient for Pipe Transit Systems, Izv. RAN, Mekh. Zhidkosti Gaza, 2001, no. 4, pp. 159–161.

    Google Scholar 

  5. Silash, A.P., Dobycha i transport nefti i gaza (Extraction and Transportation of Oil and Gas), Moscow: Nedra, 1980.

    Google Scholar 

  6. Geier, V.G., Dulin, V.S., and Zarya, A.N., Gidravlika i gidroprivod (Hydraulics and Hydrodrives), Moscow: Nedra, 1991.

    Google Scholar 

  7. Aida-zade, K.R. and Asadova, D.A., Study of Transients in Oil Pipelines, Autom. Remote Control, 2011, vol. 72, no. 12, pp. 2563–2577.

    Article  MATH  Google Scholar 

  8. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nedra, 1966.

    Google Scholar 

  9. Ashrafova, E.R. and Mamedov, V.M., A Numerical Study of the State of Evolution Processes for Unspecified Initial Conditions, Izv. NAN Azerbaidzhana, Ser. Fiz.-Mat. Nauk, 2013, vol. 33, no. 6, pp. 30–38.

    Google Scholar 

  10. Samarskii, A.A. and Vabishchevich, P.N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki (Numerical Methods for Solving Inverse Problems of Mathematical Physics), Moscow: LKI, 2009.

    Google Scholar 

  11. Korotkii, A.I., and Gribanova, E.I., Control Reconstruction in Hyperbolic Systems, Autom. Remote Control, 2012, vol. 73, no. 3, pp. 472–484.

    Article  MathSciNet  MATH  Google Scholar 

  12. Aida-zade, K.R. and Kuliev, S.Z., Numerical Solution of Nonlinear Inverse Coefficient Problems for Ordinary Differential Equations, J. Comput. Math. Math. Phys., 2011, vol. 51, no. 5, pp. 803–815.

  13. Aida-zade, K.R. and Kuliev, S.Z., On Numerical Solution of One Class of Inverse Problems for Discontinuous Dynamic Systems, Autom. Remote Control, 2012, vol. 73, no. 5, pp. 786–796.

    Article  MathSciNet  MATH  Google Scholar 

  14. Polyak, B.T., Vvedenie v optimizatsiyu (Introduction to Optimization), Moscow: Nauka, 1983.

    MATH  Google Scholar 

  15. Gabasov, R. and Kirillova, F., Printsip maksimuma v teorii optimal’nogo upravleniya (The Maximum Principle in Optimal Control Theory), Moscow: Librokom, 2011.

    Google Scholar 

  16. Vasil’ev, F.P., Metody optimizatsii (Methods of Optimization), Moscow: Faktorial Press, 2002.

    Google Scholar 

  17. Aida-zade, K.R. and Ashrafova, Y.R., Optimal Control of Sources on Some Classes of Functions, Optim. J. Math. Programm. Oper. Res., 2014, vol. 63, no. 7, pp. 1135–1152.

    MathSciNet  MATH  Google Scholar 

  18. Lions, J.L., Controle optimal des systèmes gouvernés par des équations aux derivées partielles, Paris: Dunod Gauthier-Villars, 1968. Translated under the title Optimal’noe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Moscow: Mir, 1972.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Aida-Zade.

Additional information

Original Russian Text © K.R. Aida-Zade, S.Z. Kuliev, 2016, published in Avtomatika i Telemekhanika, 2016, No. 7, pp. 123–141.

This paper was recommended for publication by V.A. Lototskii, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aida-Zade, K.R., Kuliev, S.Z. Hydraulic resistance coefficient identification in pipelines. Autom Remote Control 77, 1225–1239 (2016). https://doi.org/10.1134/S0005117916070092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916070092

Navigation