Skip to main content
Log in

Evaluating the efficiency of cell mechanisms and systems

  • Control in Social Economic Systems, Medicine, and Biology
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose an approach for estimating the efficiency of biological systems and mechanisms in vivo. We compare two mechanisms for chemical transport: diffusion and endosome transport with a cargo along a system of microtubules. Our efficiency evaluation is based on a comparison of the organism’s energy expenditure for cell house-keeping and the transport system’s operation with the speed of cargo delivery. We study the relation between transport efficiency and adaptability of the transport network. Our approach can be used to study models of live systems and solve problems of artificial life design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gingold, H. and Pilpel, Y., Determinants of Translation Efficiency and Accuracy, Molecul. Syst. Biolog., 2011, vol. 7, no. 1.

    Google Scholar 

  2. Stearns, S.C., The Evolution of Life Histories, Oxford: Oxford Univ. Press, 1992.

    Google Scholar 

  3. Smith, M.J., Optimization Theory in Evolution, Ann. Rev. Ecolog. Syst., 1978, vol. 9, pp. 31–56.

    Article  Google Scholar 

  4. Rosen, R., Optimality Principles in Biology, New York: Butterworths, 1967. Translated under the title Printsip optimal’nosti v biologii, Moscow: Mir, 1969.

    MATH  Google Scholar 

  5. Human Physiology, New York: Springer, 1984, vol. 4. Translated under the title Fiziologiya cheloveka, Schmidt, R.F. and Thews, G., Eds., Moscow: Mir, 1985.

  6. Lodish, H., Molecular Cell Biology, New York: W.H. Freeman, 2008.

    Google Scholar 

  7. Alberts, B. et al., Molecular Biology of the Cell, New York: Garland Science, 2002. Translated under the title Molekulyarnaya biologiya kletki, Izhevsk: R&D Dynamics, 2013.

    Google Scholar 

  8. Cytrynbaum, E.N., Rodionov, V., and Mogilner, A., Computational Model of Dynein-Dependent Self- Organization of Microtubule Asters, J. Cell Sci., 2004, vol. 117, pp. 1381–1397.

    Article  Google Scholar 

  9. Cangiani, A. and Natalini, R., A Spatial Model of Cellular Molecular Trafficking Including Active Transport along Microtubules, J. Theoret. Biolog., 2010, vol. 267, no. 4, pp. 614–625.

    Article  MathSciNet  Google Scholar 

  10. Liu, J., Munoz-Alicea, R., Huang, T., Tavener, S., and Chen, C., A Mathematical Model for Intracellular HIV-1 Gag Irotein Transport and its Parallel Numerical Simulations, Procedia CS, 2012, vol. 9, pp. 679–688.

    Google Scholar 

  11. Dinh, A.-T., Theofanous, T., and Mitragotri, S., A Model for Intracellular Trafficking of Adenoviral Vectors, Biophys. J., 2005, vol. 89, no. 3, pp. 1574–1588.

    Article  Google Scholar 

  12. Collinet, C., Stoter, M., Bradshaw, C.R., et al., Systems Survey of Endocytosis by Multiparametric Image Analysis, Nature, 2010, vol. 464, no. 7286, pp. 343–350.

    Article  Google Scholar 

  13. Rink, J., Ghigo, E., Kalaidzidis, Y., and Zerial, M., Rab Conversion as a Mechanism of Progression from Early to Late Endosomes, Cell, 2005, vol. 122, pp. 735–749.

    Article  Google Scholar 

  14. Flores-Rodriguez, N., Rogers, S.S., Kenwright, D.A., et al., Roles of Dynein and Dynactin in Early Endosome Dynamics Revealed Using Automated Tracking and Global Analysis, PLoS ONE, 2011, vol. 6, no. 9.

    Article  Google Scholar 

  15. Foret, L., Dawson, J.E., Villaseñor, R., et al., A General Theoretical Framework to Infer Endosomal Network Dynamics from Quantitative Image Analysis, Current Biolog., 2012, vol. 22, no. 15, pp. 1381–1390.

    Article  Google Scholar 

  16. Rogers, S.S., Flores-Rodriguez, N., Allan, V.J., et al., The First Passage Probability of Intracellular Particle Trafficking, Phys. Chem. Chem. Phys., 2010, vol. 12, no. 15, pp. 3753–3761.

    Article  Google Scholar 

  17. Kalwarczyk, T., Ziebacz, N., Bielejewska, A., et al., Comparative Analysis of Viscosity of Complex Liquids and Cytoplasm of Mammalian Cells at the Nanoscale, Nano Lett., 2011, vol. 11, no. 5, pp. 2157–2163.

    Article  Google Scholar 

  18. Segrest, J.P., Jones, M.K., De Loof, H., and Dashti, N., Structure of Apolipoprotein B-100 in Low Density Lipoproteins, J. Lipid Res., 2001, vol. 42, no. 9, pp. 1346–1367.

    Google Scholar 

  19. Novikov, K.A., Romanyukha, A.A., Gratchev, A.N., Kzhyshkowska, J.G., and Melnichenko, O.A., Mathematical Model of Cellular Transport Network Self-Organization and Functioning, Math. Models Comput. Simulations, 2015, vol. 7, no. 5, pp. 475–484.

    Article  MathSciNet  Google Scholar 

  20. McMahon, H.T. and Boucrot, E., Molecular Mechanism and Physiological Functions of Clathrin- Mediated Endocytosis, Nat. Rev. Mol. Cell. Biol., 2011, vol. 12, no. 8, pp. 517–533.

    Article  Google Scholar 

  21. West, G.B., Woodruff, W.H., and Brown, J.H., Allometric Scaling of Metabolic Rate from Molecules and Mitochondria to Cells and Mammals, Proc. Natl. Acad. Sci., 2002, vol. 99, no. 1, pp. 2473–2478.

    Article  Google Scholar 

  22. Unger, E., Böhm, K.J., and Vater, W., Structural Diversity and Dynamics of Microtubules and Polymorphic Tubulin Assemblies, Electron Microscop. Rev., 1990, vol. 3, no. 2, pp. 355–395.

    Article  Google Scholar 

  23. Kirschner, M. and Mitchison, T., Beyond Self-Assembly: From Microtubules to Morphogenesis, Cell, 1986, vol. 45, no. 3, pp. 329–342.

    Article  Google Scholar 

  24. van Deurs, B., Petersen, O.W., Olsnes, S., and Sandvig, K., The Ways of Endocytosis, Int. Rev. Cytol., 1989, vol. 117, pp. 131–177.

    Article  Google Scholar 

  25. Walker, R.A., O’Brien, E.T., Pryer, N.K., et al., Dynamic Instability of Individual Microtubules Analyzed by Video Light Microscopy: Rate Constants and Transition Frequencies, J. Cell Biolog., 1988, vol. 107, no. 4, pp. 1437–1448.

    Article  Google Scholar 

  26. Huotari, J. and Helenius, A., Endosome Maturation, EMBO J., 2011, vol. 30, no. 7, pp. 3481–3500.

    Article  Google Scholar 

  27. O’Connell, C.B. and Khodjakov, A.L., Cooperative Mechanisms of Mitotic Spindle Formation, J. Cell Sci., 2007, vol. 120, no. 10, pp. 1717–1722.

    Article  Google Scholar 

  28. Heald, R. and Nogales, E., Microtubule Dynamics, J. Cell Sci., 2002, vol. 115, no. 1, pp. 3–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Novikov.

Additional information

Original Russian Text © K.A. Novikov, A.A. Romanyukha, 2016, published in Avtomatika i Telemekhanika, 2016, No. 5, pp. 136–147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, K.A., Romanyukha, A.A. Evaluating the efficiency of cell mechanisms and systems. Autom Remote Control 77, 862–871 (2016). https://doi.org/10.1134/S000511791605009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511791605009X

Keywords

Navigation