Skip to main content
Log in

Uniform Tauberian theorem in differential games

  • Mathematical Game Theory and Applications
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper establishes the uniform Tauberian theorem for differential zero-sum games. Under rather mild conditions imposed on the dynamics and running cost, two parameterized families of games are considered, i.e., the ones with the payoff functions defined as the Cesaro mean and Abel mean of the running cost. The asymptotic behavior of value in these games is investigated as the game horizon tends to infinity and the discounting parameter tends to zero, respectively. It is demonstrated that the uniform convergence of value on an invariant subset of the phase space in one family implies the uniform convergence of value in the other family and that the limit values in the both families coincide. The dynamic programming principle acts as the cornerstone of proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaitsgory, V.G., On the Use of the Averaging Method in Control Problems, Differ. Equat., 1986, no. 11, pp. 1290–1298.

    MathSciNet  Google Scholar 

  2. Krasovskii, N.N., Upravlenie dinamicheskoi sistemoi: zadacha o minimume garantirovannogo rezul’tata (Control of the Dynamic System: The Problem of Minimum of Guaranteed Result), Moscow: Nauka, 1985.

    Google Scholar 

  3. Krasovskii, N.N. and Kotel’nikova, A.N., Unification of Differential Games, Generalized Solutions of the Hamilton–Jacobi Equations, and a Stochastic Guide, Differ. Equat., 2009, vol. 45, no. 11, pp. 1653–1668.

    Article  MathSciNet  MATH  Google Scholar 

  4. Krasovskii, N.N. and Kotel’nikova, A.N., Stochastic Guide for a Time-Delay Object in a Positional Differential Game, Tr. Inst. Mat. Mekh. UrO RAN, 2011, vol. 17, no. 2, pp. 97–104.

    MathSciNet  MATH  Google Scholar 

  5. Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differential Games), Moscow: Nauka, 1974.

    Google Scholar 

  6. Subbotin, A.I. and Chentsov, A.G., Optimizatsiya garantii v zadachakh upravleniya (Optimization of the Guarantee in Control Problems), Moscow: Nauka, 1981.

    MATH  Google Scholar 

  7. Subbotina, N.N., Singular Approximations of Minimax and Viscosity Solutions to Hamilton–Jacobi Equations, Tr. Inst. Mat. Mekh. UrO RAN, 2000, vol. 6, no. 1, pp. 190–208.

    MathSciNet  MATH  Google Scholar 

  8. Subbotina, N.N., The Method of Characteristics for Hamilton–Jacobi Equation and Its Applications in Dynamical Optimization, Modern Math. Appl., 2004, vol. 20, pp. 2955–3091.

    MathSciNet  MATH  Google Scholar 

  9. Khlopin, D.V., Tauberian Theorems for Conflict-Controlled Systems, in Abstr. Int. Conf. “Systems Dynamics and Control Processes” Dedicated to the 90th Anniversary of N.N. Krasovskii, Yekaterinburg, September 15–22, 2014, pp. 204–206.

    Google Scholar 

  10. Chentsov, A.G., On an Alternative in a Class of Nonanticipating Operators for a Differential Approach-Evasion Game, Differ. Equat., 1981, vol. 16, no. 10, pp. 1167–1171.

    MATH  Google Scholar 

  11. Chentsov, A.G., Relationship between Different Variants of the Programmed Iterations Method: The Positional Variant, Kibernetika, 2002, no. 3, pp. 130–149.

    MathSciNet  Google Scholar 

  12. Alvarez, O. and Bardi, M., Ergodic Problems in Differential Games, in Advances in Dynamic Game Theory, Boston: Birkhäuser, 2007, pp. 131–152.

    Chapter  Google Scholar 

  13. Alvarez, O. and Bardi, M., Ergodicity, Stabilization, and Singular Perturbations for Bellman–Isaacs Equation, Mem. Am. Math. Soc., 2010, vol. 960, pp. 1–90.

    MathSciNet  MATH  Google Scholar 

  14. Arisawa, M., Ergodic Problem for the Hamilton–Jacobi–Bellman Equations, Ann. Inst. Henri Poincare, 1998, vol. 15, no. 1, pp. 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  15. Artstein, Z. and Bright, I., Periodic Optimization Suffices for Infinite Horizon Planar Optimal Control, SIAM J. Control Optim., 2010, vol. 48, no. 8, pp. 4963–4986.

    Article  MathSciNet  MATH  Google Scholar 

  16. Artstein, Z. and Gaitsgory, V., The Value Function of Singularly Perturbed Control Systems, Appl. Math. Optim., 2000, vol. 41, no. 3, pp. 425–445.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bardi, M., On Differential Games with Long-Time-Average Cost, in Advances in Dynamic Games and Their Applications, Boston: Birkhäuser, 2009, pp. 3–18.

    Google Scholar 

  18. Bardi, M. and Capuzzo-Dolcetta, I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Boston: Birkhäuser, 1997.

    Book  MATH  Google Scholar 

  19. Blackwell, D., Discrete Dynamic Programming, Ann. Math. Statist., 1962, vol. 33, no. 2, pp. 719–726.

    Article  MathSciNet  MATH  Google Scholar 

  20. Buckdahn, R., Cardaliaguet, P., and Quincampoix, M., Some Recent Aspects of Differential Game Theory, Dyn. Games Appl., 2011, vol. 1, no. 1, pp. 74–114.

    Article  MathSciNet  MATH  Google Scholar 

  21. Buckdahn, R., Goreac, D., and Quincampoix, M., Existence of Asymptotic Values for Nonexpansive Stochastic Control Systems, Appl. Math. Optim., 2014, vol. 70, no. 1, pp. 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cardaliaguet, P., Ergodicity of Hamilton–Jacobi Equations with a non Coercive non Convex Hamiltonian in R2/Z2, Ann. l’Inst. Henri Poincare, Non Linear Anal., 1998, vol. 27, no. 3, pp. 837–856.

    Article  MathSciNet  Google Scholar 

  23. Carlson, D.A., Haurie, A.B., and Leizarowitz, A., Optimal Control on Infinite Time Horizon, Berlin: Springer, 1991.

    Book  MATH  Google Scholar 

  24. Chentsov, A.G. and Morina, S.I., Extensions and Relaxations, in Mathematics and Its Applications, Dordrecht: Kluwer, 2002, vol. 542.

    Google Scholar 

  25. Elliot, R.J. and Kalton, N., The Existence of Value for Differential Games, in Memoir of the American Mathematical Society, Providence: AMS, 1972, vol. 126.

    Google Scholar 

  26. Evans, L. and Souganidis, P.E., Differential Games and Representation Formulas for Solutions of Hamilton–Jacobi–Isaacs Equations, Indiana Univ. Math. J., 1984, vol. 33, pp. 773–797.

    Article  MathSciNet  MATH  Google Scholar 

  27. Gaitsgory, V. and Quincampoix, M., On Sets of Occupational Measures Generated by a Deterministic Control System on an Infinite Time Horizon, Nonlin. Anal. Theory, Meth. Appl., 2011, vol. 88, pp. 27–41.

    Article  MathSciNet  MATH  Google Scholar 

  28. Hardy, G.H., Divergent Series, Oxford: Oxford Univ. Press, 1949.

    MATH  Google Scholar 

  29. Hardy, G.H. and Littlewood, J.E., Tauberian Theorems Concerning Power Series and Dirichlet’s Series Whose Coefficients are Positive, Proc. London Math. Soc., 1914, vol. 13, pp. 174–191.

    Article  MathSciNet  MATH  Google Scholar 

  30. Khlopin, D.V., A Uniform Tauberian Theorem for Abstract Game, Abstr. Fourth Int. School-Seminar “Nonlinear Analysis and Extremal Problems,” June 22–28, 2014, p. 59.

    Google Scholar 

  31. Krasovskii, N.N. and Chentsov, A.G., On the Design of Differential Games. I, Probl. Control Inform. Theory, 1997, vol. 6, no. 5–6, pp. 381–395.

    MathSciNet  Google Scholar 

  32. Krasovskii, N.N. and Subbotin, A.I., Game-Theoretical Control Problems, New York: Springer-Verlag, 1988.

    Book  Google Scholar 

  33. Lions, P.-L., Papanicolaou, G., and Varadhan, S.R.S., Homogenization of Hamilton–Jacobi Equations, Preprint, 1986.

    Google Scholar 

  34. Mertens, J.F. and Neyman, A., Stochastic Games, Int. J. Game Theory, 1981, vol. 10, no. 2, pp. 53–66.

    Article  MathSciNet  MATH  Google Scholar 

  35. Oliu-Barton, M. and Vigeral, G., A Uniform Tauberian Theorem in Optimal Control, in Advances in Dynamic Games, Cardaliaguet, P. and Cressman, R., Eds., Boston: Birkhäuser, 2013, pp. 199–215.

    Chapter  Google Scholar 

  36. Quincampoix, M. and Renault, J., On the Existence of a Limit Value in Some Non Expansive Optimal Control Problems, SIAM J. Control Optim., 2011, vol. 49, no. 5, pp. 2118–2132.

    Article  MathSciNet  MATH  Google Scholar 

  37. Roxin, E., Axiomatic Approach in Differential Games, J. Optim. Theory Appl., 1969, vol. 3, no. 3, pp. 153–163.

    Article  MathSciNet  MATH  Google Scholar 

  38. Ryll-Nardzewski, C., A Theory of Pursuit and Evasion, in Advances in Game Theory, Dresher, M. and Aumann, R.J., Eds., Princeton: Princeton Univ. Press, 1964, pp. 113–126.

    Google Scholar 

  39. Subbotin, A.I., Generalized Solutions of First Order PDEs, Boston: Birkhäuser, 1995.

    Book  Google Scholar 

  40. Varaiya, P.P., On the Existence of Solutions to a Differential Game, SIAM J. Control, 1967, vol. 5, no. 1, pp. 153–162.

    Article  MathSciNet  MATH  Google Scholar 

  41. Vigeral, G., A Zero-Sum Stochastic Game with Compact Action Sets and No Asymptotic Value, Dynamic Games Appl., 2013, vol. 3, no. 2, pp. 172–186.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Khlopin.

Additional information

Original Russian Text © D.V. Khlopin, 2015, published in Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2015, No. 1, pp. 92–120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlopin, D.V. Uniform Tauberian theorem in differential games. Autom Remote Control 77, 734–750 (2016). https://doi.org/10.1134/S0005117916040172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916040172

Keywords

Navigation