Skip to main content
Log in

Complex networks and activity spreading

  • Reviews
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We give a brief survey of the basic notions of the theory of complex networks and various models of activity spreading in networks. We consider the role of random graph theory for the study of complex networks, describe small world and scale-free networks, activity spreading models in social networks, percolation processes, the concept of self-organized criticality, and two versions of its formalization: cellular automata and the chip firing game. We note the common elements of all considered models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evin, I.A., Introduction to the Theory of Complex Networks, Komp’yut. Issled. Modelir., 2010, vol. 2, no. 2, pp. 121–141.

    Google Scholar 

  2. Slovokhotov, Yu.L., Physics and Sociophysics. II, Probl. Upravlen., 2012, no. 2, pp. 2–31.

    Google Scholar 

  3. Dorogovtsev, S., Lectures on Complex Networks, Oxford: Oxford Univ. Press, 2010.

    Book  MATH  Google Scholar 

  4. Jackson, M.O., Social and Economic Networks, Prinston: Prinston Univ. Press, 2008.

    MATH  Google Scholar 

  5. Raigorodskii, A.M., Modeli Interneta (Models of the Internet), Dolgoprudny: Intellekt, 2013.

    Google Scholar 

  6. Ball, Ph., Critical Mass: How One Thing Leads to Another, New York: Farrar, Straus and Giroux, 2004. Translated under the title Kriticheskaya massa. Kak odni yavleniya porozhdayut drugie, Moscow: Geleos, 2008.

    Google Scholar 

  7. Khoroshevskii, V.F., Knowledge Spaces on the Internet and Semantic Web. II, Iskusstv. Intellekt Prinyatie Reshenii, 2009, no. 4, pp. 15–36.

    Google Scholar 

  8. Khoroshevskii, V.F., Knowledge Spaces on the Internet and Semantic Web. III, Iskusstv. Intellekt Prinyatie Reshenii, 2012, no. 1, pp. 3–38.

    Google Scholar 

  9. Watts, D.J. and Strogatz, S.H., Collective Dynamics of “Small-World” Networks, Nature, 1998, vol. 393, pp. 440–442.

    Article  Google Scholar 

  10. Bollobas, B., Mathematical Results on Scale-Free Random Graphs, in Handbook on Graphs and Networks, Weinheim: Wiley-VCH, 2003, pp. 1–34.

    Google Scholar 

  11. Erdos, P. and Rényi, A., On Random Graphs. I, Publ. Math. Debrecen, 1959, vol. 6, pp. 290–297.

    MathSciNet  Google Scholar 

  12. Raigorodskii, A.M., Models of Random Graphs and Their Applications, Tr. MFTI, 2010, vol. 2, no. 4, pp. 130–140.

    MathSciNet  Google Scholar 

  13. Kolchin, V.F., Sluchainye grafy (Random Graphs), Moscow: Fizmatlit, 2004, 2nd ed.

    Google Scholar 

  14. Bollobas, B, Random Graphs, Cambridge: Cambridge Univ. Press, 2001, 2nd ed.

    Book  MATH  Google Scholar 

  15. Milgram, S., The Small-World Problem, Psychol. Today, 1967, vol. 1, pp. 62–67.

    Google Scholar 

  16. Milgram, S., The Individual in a Social World: Essays and Experiments, Harlow: Longman Higher Education, 1977. Translated under the title Eksperiment v sotsial’noi psikhologii, St. Petersburg: Piter, 2000.

    Google Scholar 

  17. Dunbar, R.I.M., Neocortex Size as a Constraint on Group Size in Primates, J. Human Evolut., 1992, vol. 22, pp. 469–493.

    Article  Google Scholar 

  18. Seung, S., Connectome: How the Brain’s Wiring Makes Us Who We Are, 2012, ISBN 978-0547508184. Translated under the title Konnektom. Kak mozg delaet nas tem, chto my est’, Moscow: Binom, 2014.

    Google Scholar 

  19. Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., and Christiansen, M.H., Networks in Cognitive Science, Trends Cognitiv. Sci., 2013, vol. 17, no. 7, pp. 348–360.

    Article  Google Scholar 

  20. Ford, L.R. and Fulkerson, D.R., Flows in Networks, Princeton: Princeton Univ. Press, 1962. Translated under the title Potoki v setyakh, Moscow: Mir, 1996.

    MATH  Google Scholar 

  21. Adel’son-Vel’skii, E.M., Dinits, E.F., and Karzanov, A.V., Potokovye algoritmy (Flow Algorithms), Moscow: Nauka, 1975.

    Google Scholar 

  22. Zhilyakova, L.Yu., Dynamic Graph Models and Their Properties, Autom. Remote Control, 2015, vol. 76, no. 8, pp. 1417–1435.

    Article  Google Scholar 

  23. Barabasi, A. and Albert, R., Emergence of Scaling in Random Networks, Sci., 1999, no. 286, pp. 509–512.

    Article  MathSciNet  Google Scholar 

  24. Bollobas, B. and Riordan, O., Robustness and Vulnerability of Scale-Free Random Graphs, Internet Math., 2003, vol. 1, no. 1, pp. 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  25. Bak, P., How Nature Work, New York: Copernicus, 1996. Translated under the title Kak rabotaet priroda, Moscow: LIBROKOM, 2013.

    Google Scholar 

  26. Novikov, D.A., Models of Network Excitation Control, Procedia Comput. Sci., 2014, vol. 31, pp. 184–192.

    Article  Google Scholar 

  27. De Groot, M.H., Reaching a Consensus, J. Am. Statist. Assoc., 1974, vol. 69, no. 345, pp. 118–121.

    Article  Google Scholar 

  28. Agaev, R.P. and Chebotarev, P.Yu., Convergence and Stability in Parameter Consensus Problems (A Survey of Basic Results), Upravlen. Bol’shimi Sist., 2010, no. 30. 1 “Network Models in Control,” pp. 470–505.

    Google Scholar 

  29. Heider, F., The Psychology of Interpersonal Relations, New York: Wiley, 1958.

    Book  Google Scholar 

  30. Granovetter, M.S., The Strength of Weak Ties, The Am. J. Sociol., 1973, vol. 78, no. 6, pp. 1360–1380.

    Article  Google Scholar 

  31. Korte, Ch. and Milgram, S., Acquaintance Networks between Racial Groups, J. Personal. Soc. Psychol., 1970, vol. 15, pp. 101–108.

    Article  Google Scholar 

  32. Fortunato, S., Community Detection in Graphs, Phys. Rep., 2010, vol. 486, no. 3–5, pp. 75–174.

    Article  MathSciNet  Google Scholar 

  33. Granovetter, M.S., Threshold Models of Collective Behavior, Am. J. Sociol., 1978, vol. 83, no. 6, pp. 1420–1443.

    Article  Google Scholar 

  34. Breer, V.V., Novikov, D.A., and Rogatkin, A.D., Micro- and Macromodels of Social Networks. I, Probl. Upravlen., 2014, no. 5, pp. 28–33.

    Article  Google Scholar 

  35. Batov, A.V., Breer, V.V., Novikov, D.A., and Rogatkin, A.D., Micro- and Macromodels of Social Networks. II, Probl. Upravlen., 2014, no. 6, pp. 45–51.

    Google Scholar 

  36. Breer, V.V., Models of Conformal Behavior: A Survey, Probl. Upravlen., 2014, no. 1, pp. 2–13; no. 2, pp. 2–17.

    Google Scholar 

  37. Bollobas, B. and Riordan, O., Percolation, Cambridge: Cambridge Univ. Press, 2009, 2nd. ed.

    Google Scholar 

  38. Tarasenko, Yu.Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy (Percolation: Theory, Application, Algorithms), Moscow: LIBROKOM, 2012, 2nd ed.

    Google Scholar 

  39. Kesten, H., Percolation Theory for Mathematicians, Boston: Birkhauser, 1982. Translated under the title Teoriya prosachivaniya dlya matematikov, Moscow: Mir, 1986.

    MATH  Google Scholar 

  40. Harris, T.E., A Lower Bound for Critical Probability in a Certain Percolation Process, Proc. Cambr. Phil. Soc., 1960, vol. 56, pp. 13–20.

    Article  MATH  Google Scholar 

  41. Fisher, M.E., Critical Probabilities for Cluster Size and Percolation Problems, J. Math. Phys., 1961, vol. 2, pp. 602–627.

    Article  Google Scholar 

  42. Schroeder, M., Factals, Chaos, Power Laws. Minutes from an Infinite Paradise, New York: W.H. Freeman, 1991. Translated under the title Fraktaly, khaos, stepennye zakony. Miniatyury iz beskonechnogo raya, Izhevsk: NITs “Regulyarnaya i Khaoticheskaya Dinamika,” 2005.

    Google Scholar 

  43. Dhar, D., Self-Organized Critical State of Sandpile Automaton Models, Phys. Rev. Lett., 1990, vol. 64, no. 14, pp. 1613–1616.

    Article  MathSciNet  MATH  Google Scholar 

  44. Björner, A., Lovász, L., and Shor, P., Chip-firing Games on Graphs, Eur. J. Comb., 1991, vol. 12, pp. 283–291.

    Article  MATH  Google Scholar 

  45. Bullmore, E. and Sporns, O., Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems, Neurosci., March 2009, vol. 10, pp. 186–198.

    Google Scholar 

  46. Sporns, O., Networks of the Brain, Cambridge: MIT Press, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Kuznetsov.

Additional information

Original Russian Text © O.P. Kuznetsov, 2015, published in Avtomatika i Telemekhanika, 2015, No. 12, pp. 3–26.

This paper was recommended for publication by D.A. Novikov, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, O.P. Complex networks and activity spreading. Autom Remote Control 76, 2091–2109 (2015). https://doi.org/10.1134/S0005117915120012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117915120012

Keywords

Navigation