Skip to main content
Log in

Consensus in nonlinear stationary networks with identical agents

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

For the multiagent networks with arbitrary-order identical agents and nonlinear uncertain couplings, satisfying the sector inequalities consideration was given to the problem of reaching consensus (asymptotic synchronization) The network topology was assumed to be time-invariant. A frequency-domain consensus criterion extending the Popov criterion for the absolute stability of Lurie systems with one scalar-valued nonlinearity was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agaev, R.P. and Chebotarev, P.Yu., Convergence and Stability in the Problem of Characteristic Coordination, Upravlen. Bol’shimi Sist., 2010, no. 30.1, pp. 470–505.

    Google Scholar 

  2. Ren, W. and Beard, R., Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications, London: Springer, 2008.

    Book  Google Scholar 

  3. Ren, W. and Cao, W., Distributed Coordination of Multi-agent Networks, London: Springer, 2011.

    Book  MATH  Google Scholar 

  4. Olfati-Saber, R., Fax, J.A., and Murray, R.M., Consensus and Cooperation in Networked Multi-agent Systems, Proc. IEEE, 2007, vol. 95, no. 1, pp. 215–233.

    Article  Google Scholar 

  5. Reynolds, C.W., Flocks, Herds, and Schools: A Distributed Behavioral Model, Comput. Graphics, 1987, vol. 21, pp. 25–34.

    Article  Google Scholar 

  6. Bullo, F., Cortes, J., and Martinez, S., Distributed Control of Robotics Networks, Princeton: Princeton Univ. Press, 2009.

    Book  Google Scholar 

  7. Paley, D., Sepulchre, R., and Leonard, N.E., Stabilization of Planar Collective Motion with Limited Communication, IEEE Trans. Autom. Control, 2008, vol. 53, no. 6, pp. 706–719.

    MathSciNet  Google Scholar 

  8. Tanner, H.G., Jadbabaie, A., and Pappas, G.J., Flocking in Fixed and Switching Networks, IEEE Trans. Autom. Control, 2007, vol. 52, no. 5, pp. 863–868.

    Article  MathSciNet  Google Scholar 

  9. Shcherbakov, P.S., Formation Control: The Van Loan Scheme and Other Algorithms, Autom. Remote Control, 2011, vol. 72, no. 10, pp. 2210–2219.

    Article  MATH  Google Scholar 

  10. Kvinto, Ya.I. and Parsegov, S.E., Equidistant Arrangement of Agents on Line: Analysis of the Algorithm and Its Generalization, Autom. Remote Control, 2012, vol. 73, no. 11, pp. 1784–1793.

    Article  MATH  MathSciNet  Google Scholar 

  11. Morozov, Yu.V., Modification and Comparative Analysis of Smooth Control Laws for a Group of Agents, Autom. Remote Control, 2012, vol. 73, no. 11, pp. 1838–1851.

    Article  MATH  MathSciNet  Google Scholar 

  12. Amelina, N.O. and Fradkov, A.L., Approximate Consensus in the Dynamic Stochastic Network with Incomplete Information and Measurement Delays, Autom. Remote Control, 2012, vol. 73, no. 11, pp. 1765–1783.

    Article  MATH  MathSciNet  Google Scholar 

  13. Agaev, R.P. and Chebotarev, P.Yu., Coordination in Multiagent Systems and Laplacian Spectra of Digraphs, Autom. Remote Control, 2009, vol. 70, no. 3, pp. 469–483.

    Article  MATH  MathSciNet  Google Scholar 

  14. Moreau, L., Stability of Multiagent Systems with Time-dependent Communication Links, IEEE Trans. Autom. Control, 2005, vol. 50, no. 2, pp. 169–182.

    Article  MathSciNet  Google Scholar 

  15. Wieland, P., Sepulchre, R., and Allgöwer, F., An Internal Model Principle is Necessary and Sufficient for Linear Output Synchronization, Automatica, 2011, vol. 47, pp. 1068–1074.

    Article  MATH  Google Scholar 

  16. Strogatz, S., From Kuramoto to Crawford: Exploring the Onset of Synchronization in Populations of Coupled Oscillators, Physica D, 2000, no. 143, pp. 643–651.

    Article  MathSciNet  Google Scholar 

  17. Lin, Z., Francis, B., and Maggiore, M., State Agreement for Continuous-time Coupled Nonlinear Systems, SIAM J. Control Optim., 2007, vol. 46, no. 1, pp. 288–307.

    Article  MATH  MathSciNet  Google Scholar 

  18. Fang, L. and Antsaklis, P., Asynchronous Consensus Protocols Using Nonlinear Paracontractions Theory, IEEE Trans. Autom. Control, 2008, vol. 53, no. 10, pp. 2351–2355.

    Article  MathSciNet  Google Scholar 

  19. Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complex Dynamic Systems), St. Petersburg: Nauka, 2000.

    Google Scholar 

  20. Chopra, N. and Spong, M.W., Passivity-based Control of Multi-agent Systems, in Advances in Robot Control, Kawamura, S. and Svinin, M., Eds., Berlin: Springer, 2006, pp. 107–134.

    Chapter  Google Scholar 

  21. Proskurnikov, A., Consensus in Switching Networks with Sectorial Nonlinear Couplings: Absolute Stability Approach, Automatica, 2013, vol. 49, no. 2, pp. 488–495.

    Article  MATH  MathSciNet  Google Scholar 

  22. Proskurnikov, A., Nonlinear Consensus Algorithms with Uncertain Couplings, Asian J. Control, 2014, vol. 16, no. 5, pp. 1277–1288.

    Article  MATH  MathSciNet  Google Scholar 

  23. Proskurnikov, A.V., Frequency-domain Criteria for Consensus in Multiagent Systems with Nonlinear Sector-shaped Couplings, Autom. Remote Control, 2014, vol. 75, no. 11, pp. 1982–1995.

    Article  MathSciNet  Google Scholar 

  24. Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with Nonunique Equilibrium), Moscow: Nauka, 1978.

    Google Scholar 

  25. Popov, V.M., Giperustoichivost’ avtomaticheskikh sistem (Hyperstability of Automatic Systems), Moscow: Nauka, 1970.

    Google Scholar 

  26. Ren, W., On Consensus Algorithms for Double-integrator Dynamics, IEEE Trans. Autom. Control, 2008, vol. 49, no. 9, pp. 1503–1509.

    Article  Google Scholar 

  27. Fiedler, M., Algebraic Connectivity of Graphs, Czech. Math. J., 1973, vol. 23, pp. 298–305.

    MathSciNet  Google Scholar 

  28. Merris, R., Laplacian Matrices of Graphs: A Survey, Linear Algebra Appl., 1994, vol. 197, pp. 143–176.

    Article  MathSciNet  Google Scholar 

  29. Lafferriere, G., Williams, A., Caughman, J., and Veerman, J.J.P., Decentralized Control of Vehicle Formations, Syst. Control Lett., 2005, vol. 54, pp. 899–910.

    Article  MATH  MathSciNet  Google Scholar 

  30. Zheng, Y. and Wang, L., Consensus of Heterogeneous Multi-agent Systems without Velocity Measurements, Int. J. Control, 2012, vol. 85, no. 7, pp. 906–914.

    Article  MATH  Google Scholar 

  31. Yakubovich, V.A., Frequency Theorem in the Control Theory, Sib. Mat. Zh., 1973, vol. 14, no. 2, pp. 384–420.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Proskurnikov.

Additional information

Original Russian Text © A.V. Proskurnikov, 2015, published in Avtomatika i Telemekhanika, 2015, No. 9, pp. 44–63.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proskurnikov, A.V. Consensus in nonlinear stationary networks with identical agents. Autom Remote Control 76, 1551–1565 (2015). https://doi.org/10.1134/S0005117915090039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117915090039

Keywords

Navigation