Skip to main content
Log in

A multi-alternative approach to control in open systems: Origins, current state, and future prospects

  • Large Scale Systems Control
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The paper addresses biological origins, the present state, and future prospects of a multi-alternative approach to the problem of automatic control in dynamical systems. We show that this approach meets the famous Law of Requisite Variety by Ashby and generalizes natural evolutionary mechanisms of open biological systems supporting their high level of adaptation to environment changes. We provide several examples of multi-alternative control in technical systems. These examples show increase in robustness and efficiency in accordance with predictions of biological analogy. We formulate the general functional scheme of a multi-alternative control system, build its mathematical model, and analyze the prospects of their extension in the context of intellectual control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, As., Dmitriev, V.Yu., and Ponomarenko, A.G., Evolyutsiya taksonomicheskogo raznoobraziya (Evolution of Taxonomic Diversity), Moscow: Geos, 2001.

    Google Scholar 

  2. Anokhin, P.K., Sistemnye mekhanizmy vysshei nervnoi deyatel’nosti (System Mechanisms of Higher Nervous Activity), Moscow: Nauka, 1979.

    Google Scholar 

  3. Barabanov, A.V. and Podval’nyi, S.L., Structural Modeling of Continuous Multi-Center Polymerization Processes, Autom. Remote Control, 2012, vol. 73, no. 7, pp. 1265–1268.

    MathSciNet  MATH  Google Scholar 

  4. Burnie, D., The Kingfisher Illustrated Nature Encyclopedia, London: Kingfisher, 2004. Translated under the title Bol’shaya illyustrirovannaya entsiklopediya zhivoi prirody, Moscow: Makhaon, 2011.

    Google Scholar 

  5. Bazhenov, Yu.M., Tekhnologiya betona (Concrete Technology), Moscow: ASV, 2002.

    Google Scholar 

  6. Beme, R.L. and Flint, V.E., Pyatiyazychnyi slovar’ nazvanii zhivotnykh. Ptitsy (Dictionary of Animal Names in Five Languages: Birds), Sokolov, V.E., Ed., Moscow: Russkii Yazyk, 1994.

    Google Scholar 

  7. von Bertalanffy, L., General System Theory—A Critical Review, Gen. Syst., 1962, vol. 7, pp. 1–20.

    Google Scholar 

  8. Besekerskii, V.A. and Nebylov, A.V., Robastnye sistemy avtomaticheskogo upravleniya (Robust Automatic Control Systems), Moscow: Nauka, 1983.

    Google Scholar 

  9. Bobtsov, A.A. and Kholunin, S.A., Development of Robust Control Methods in Adaptation Problems, Nauch.-Tekhn. Vestn. S.-Peterburg. Gos. Inst. Tochn. Mekh. Opt., 2002, vol. 6, pp. 223–228.

    Google Scholar 

  10. Bol’shaya Sovetskaya Entsiklopediya (The Great Soviet Encyclopedia), Prokhorov, A.M., Ed., Moscow: Sovetskaya Entsiklopediya, 1974, vol. 18.

  11. Vavilov, N.I., Zakon gomologicheskikh ryadov v nasledstvennoi izmenchivosti (The Law of Homologous Series in the Case of Hereditary Variation), Leningrad: Nauka, 1987.

    Google Scholar 

  12. Vasiljev, E.M., Adaptive PID Controllers in the Systems with Delay, Inform. Tekhnol. Modelir. Upravlen., 2008, no. 6, pp. 653–657.

    Google Scholar 

  13. Vasiljev, E.M., Chaotic Movements in Systems of the Low Order, Vesnt. Voronezh. Gos. Tekhn. Univ., 2012, vol. 8, no. 6, pp. 104–108.

    Google Scholar 

  14. Vasiljev, E.M., Control of Critical Modes of Chaotic Systems, Vesnt. Voronezh. Gos. Tekhn. Univ., 2012, vol. 8, no. 9, pp. 32–39.

    Google Scholar 

  15. Vasiljev, E.M., Robust Stabilization of Multidimensional Objects in Systems with Variable Structure, Vesnt. Voronezh. Gos. Tekhn. Univ., 2012, vol. 8, no. 11, pp. 24–26.

    Google Scholar 

  16. Vasiljev, E.M., Multi-Alternative Control in Chaotic Systems of Communication, Vesnt. Voronezh. Gos. Tekhn. Univ., 2012, vol. 8, no. 11, pp. 155–158.

    Google Scholar 

  17. Vasiljev, E.M., Research of Critical Modes in Control Systems of Heat Exchange, Vesnt. Voronezh. Gos. Tekhn. Univ., 2012, vol. 8, no. 12.1, pp. 69–72.

    Google Scholar 

  18. Vasiljev, E.M., Goncharov, As., and Mironov, S.M., Frequency Synthesis of Servo Control with Variable Structure, Elektrotekhn. Kompl. Sist. Upravlen., 2012, no. 4, pp. 52–55.

    Google Scholar 

  19. Vasiljev, E.M. and Gusev, K.Yu., Modal Control of Non-Stationary Systems, Vestn. Voronezh. Gos. Tekhn. Univ., 2008, vol. 4, no. 8, pp. 46–54.

    Google Scholar 

  20. Vasiljev, E.M. and Gusev, K.J., Synthesis of Adaptive Observers with Division of Movements, Elektrotekhn. Kompl. Sist. Upravlen., 2009, no. 2, pp. 55–58.

    Google Scholar 

  21. Vasiljev, E.M. and Krutskikh, I.V., Evolutionary Algorithms with Matrix Replication, Vestn. Voronezh. Gos. Tekhn. Univ., 2011, vol. 7, no. 2, pp. 21–23.

    Google Scholar 

  22. Vasiljev, E.M. and Prokofjeva, D.M., Fuzzy Control of Structurally Unstable Objects, Vesnt. Voronezh. Gos. Tekhn. Univ., 2012, vol. 8, no. 10.1, pp. 8–12.

    Google Scholar 

  23. Vasiljev, E.M. and Taratynov, O.Ju., The Synthesis of Adaptive Industrial Regulator, Elektrotekhn. Kompl. Sist. Upravlen., 2008, no. 3, pp. 54–58.

    Google Scholar 

  24. Vasiljev, E.M. and Taratynov, O.Ju., Automatic Adjustment of Regulators by Algorithms Extreme Search, Elektrotekhn. Kompl. Sist. Upravlen., 2008, no. 4, pp. 59–62.

    Google Scholar 

  25. Vasiljev, E.M. and Taratynov, O.Ju., Control Algorithms of Heat and Humidity Processing Concrete Products, Vesnt. Voronezh. Gos. Tekhn. Univ., 2012, vol. 8, no. 2, pp. 13–16.

    Google Scholar 

  26. Wiener, N., Cybernetics; or, Control and Communication in the Animals and the Machines, New York: MIT Press, 1961. Translated under the title Kibernetika ili upravlenie i svyaz’ v zhivotnom i mashine, Moscow: Sovetskoe Radio, 1968.

    Google Scholar 

  27. Voronov, K.V., Koroleva, O.I., and Nikiforov, V.O., Robust Control of Nonlinear Objects with Functional Uncertainties, Autom. Remote Control, 2001, vol. 62, no. 2, pp. 269–277.

    MathSciNet  MATH  Google Scholar 

  28. Galimov, E.M., Fenomen zhizni: mezhdu ravnovesiem i nelineinost’yu. Proiskhozhdenie i printsipy evolyutsii (Phenomenon of Life: Between Equilibrium and Non-linearity. Origin and Principles of Evolution), Moscow: Editorial URSS, 2006.

    Google Scholar 

  29. Grinin, L.E., Markov, A.V., and Korotaev, A.V., Makroevolyutsiya v zhivoi prirode i obshchestve (Macroevolution in Nature and Society), Moscow: Librokom, 2009.

    Google Scholar 

  30. Jury, E.I., Robustness of Discrete-Time Systems, Autom. Remote Control, 1990, vol. 51, no. 5, pp. 571–592.

    MathSciNet  MATH  Google Scholar 

  31. Dli, M.I., Kruglov, V.V., and Golunov, R.Y., Nechetkaya logika i iskusstvennye neironnye seti (Fuzzy Logic and Artificial Neural Networks) Moscow: Fizmatlit, 2001.

    Google Scholar 

  32. Dmitriev, As., Panas, A.I., and Starkov, S.O., Dynamic Chaos as a Paradigm of the Modern Communication Systems, Zarub. Radioelektron., 1997, no. 10, pp. 4–26.

    Google Scholar 

  33. Dorofeev, V.I., Gudkov, V.V., Dorofeev, D.V., Podvalny, S.L., and Mikhalev, M.V., Method of Operation of Periodic Process of Polymerization of Butadiene-Styrene Thermoelastplastics, RF Patent 2 188 210, Byull. Izobret., 2002, no. 5.

  34. Dorofeev, D.V. and Podvalny, S.L., Multidimensional Modular Controller Design in Industrial Control System of Butadiene-Styrene Rubber Polymerization, Promysh. ASU Kontrollery, 2002, no. 6, pp. 24–26.

    Google Scholar 

  35. Druzhinina, M.V., Nikiforov, V.O., and Fradkov, A.L., Adaptive Output ControlMethods for Nonlinear Objects, Autom. Remote Control, 1996, vol. 57, no. 2, part 1, pp. 153–176.

    MathSciNet  MATH  Google Scholar 

  36. Emel’yanov, S.V., Sistemy avtomaticheskogo upravleniya s peremennoi strukturoi (Automatic Control Systems with Variable Structure), Moscow: Nauka, 1967.

    Google Scholar 

  37. Zhusubaliev, Zh.T. and Titov, V.S., Bifurkatsii v shirotno-impul’snykh sistemakh avtomaticheskogo regulirovaniya (Bifurcations in the Pulse-Width Systems of Automatic Control), Kursk: Kursk. Gos. Tekhn. Univ., 2007.

    Google Scholar 

  38. Zadeh, L.A., Outline of a New Approach to the Analysis of Complex Systems and Decision Processes, IEEE Trans. Syst., Man, Cybern., 1973, vol. SMC–3, pp. 28–44.

    MathSciNet  Google Scholar 

  39. Intellektual’nye sistemy avtomaticheskogo upravleniya (Intellectual Systems of Automatic Control), Makarov, I.M. and Lokhin, V.M., Eds., Moscow: Fizmatlit, 2001.

    Google Scholar 

  40. Callan, R., The Essence of Neural Networks, London: Prentice Hall, 1998. Translated under the title Osnovnye kontseptsii neironnykh setei, Moscow: Vil’yams, 2003.

    Google Scholar 

  41. Karpenkov, C.Kh., Kontseptsii sovremennogo estestvoznaniya (Concepts of Modern Natural Science), Moscow: Akademicheskii Proekt, 2003.

    Google Scholar 

  42. Sovremennaya prikladnaya teoriya upravleniya, chast’ 1: Optimizatsionnyi podkhod v teorii upravleniya (Modern Applied Control Theory, vol. 1: Optimization Approach in Control Theory), Kolesnikov, A.A., Ed., Taganrog: Taganrog. Gos. Radiotekhn. Univ., 2000.

    Google Scholar 

  43. Kolesnikov, A.A., Sinergeticheskie metody upravleniya slozhnymi sistemami: teoriya sistemnogo sinteza (Synergetic Control Methods of Complex Systems: System Synthesis Theory), Moscow: KomKniga, 2006.

    Google Scholar 

  44. Krassilov, V.A., Theory of Evolution: A New Synthesis Is Needed, in Evolyutsionnye issledovaniya. Makroevolyutsiya (Evolutionary Research. Macroevolution), Krassilov, V.A, Ed., Vladivostok: Dal’nevost. Nauchn. Tsentr, 1984, pp. 4–17.

    Google Scholar 

  45. Krasnova, S.A., Cascaded Design of the State Observer for Nonlinear Systems in the Presence of External Perturbations, Autom. Remote Control, 2003, vol. 64, no. 1, pp. 1–22.

    MathSciNet  MATH  Google Scholar 

  46. Krasovskii, A.A., Problems of Physical Control Theory, Autom. Remote Control, 1990, vol. 51, no. 11, part 1, pp. 1459–1479.

    MathSciNet  Google Scholar 

  47. Kruglov, V.V., Iskusstvennye neironnye seti. Teoriya i praktika (Artificial Neural Networks. Theory and Practice), Moscow: Goryachaya Liniya–Telekom, 2001.

    Google Scholar 

  48. Krutova, I.N. and Rutkovskii, V.Yu., Robustness of Control Systems with Nonlinear Parametric Correction to Some Forms of Disturbances, Autom. Remote Control, 1991, vol. 52, no. 9, part 2, pp. 1293–1303.

    MathSciNet  MATH  Google Scholar 

  49. Kurdyukov, A.P., Osnovy robastnogo upravleniya (Principles of Robust Control), Moscow: Mosk. Gos. Tekhn. Univ., 1995.

    Google Scholar 

  50. Letov, A.M., Conditionally Stable Control Systems (on a Class of Optimal Control Systems), Autom. Remote Control, 1957, vol. 18, no. 7, pp. 649–664.

    Google Scholar 

  51. Manukovskaya, M.M. and Vasiljev, E.M., Active Models of Neural Networks for Decision-Making, Elektrotekh. Kompleksy Sist. Upravlen., 2008, no. 4, pp. 76–78.

    Google Scholar 

  52. Meyen, S.V., Towards a New Synthesis or Where Gomological Series Leads, Znanie–Sila, 1972, no. 8, pp. 20–22.

    Google Scholar 

  53. Metody avtomaticheskogo proektirovaniya nelineinykh sistem (Methods of Automatic Design of Nonlinear Systems), Topcheev, Yu.I., Ed., Moscow: Mashinostroenie, 1993.

    Google Scholar 

  54. Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya (Methods of Classical and Modern Automatic Control Theory), Pupkov, K.F. and Egupov, N.D., Eds., Moscow: MGTU, 2004, vol. 5.

  55. Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.V., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control for Complex Dynamic Systems), St. Petersburg: Nauka, 2000.

    Google Scholar 

  56. Moon, F., Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers, New York: Wiley, 1992. Translated under the title Khaoticheskie kolebaniya, Moscow: Mir, 1990.

    Google Scholar 

  57. Nelineinye korrektiruyushchie ustroistva v sistemakh avtomaticheskogo upravleniya (Nonlinear Compensators in Automatic Control Systems), Topcheev, Yu.I., Ed., Moscow: Mashinostroenie, 1971.

    Google Scholar 

  58. Nikiforov, V.O. and Fradkov, A.L., Adaptive Control Systems with Augmented Errors, Autom. Remote Control, 1994, vol. 55, no. 9, part 1, pp. 1239–1255.

    MathSciNet  MATH  Google Scholar 

  59. Nikiforov, V.O., Robust Output Control for a Linear Object, Autom. Remote Control, 1998, vol. 59, no. 9, part 1, pp. 1274–1283.

    MathSciNet  MATH  Google Scholar 

  60. Nikiforov, V.O., Slita, O.V., and Ushakov, A.V., Intellektual’noe upravlenie v usloviyakh neopredelennosti (Intelligent Control under Uncertainty), St. Petersburg: SPbGU ITMO, 2011.

    Google Scholar 

  61. Podvalny, S.L., Adaptation and Optimization at Design of the PCS with the Use of SimulationModeling Methods, in Strukturnaya adaptatsiya slozhnykh sistem upravleniya (Structural Adaptation of Complex Control Systems), Voronezh: Voronezh. Politekhn. Inst., 1979, pp. 114–116.

    Google Scholar 

  62. Podvalny, S.L., Evolutionary Principles of Formation of Structure of Computing Systems, in Adaptatsiya v slozhnykh sistemakh upravleniya (Adaptation in Complex Control Systems), Voronezh: Voronezh. Politekhn. Inst., 1979, pp. 60–63.

    Google Scholar 

  63. Podvalny, S.L., Modelirovanie promyshlennykh protsessov polimerizatsii (Industrial Polymerization Process Modeling), Moscow: Khimiya, 1979.

    Google Scholar 

  64. Podvalny, S.L., Evolutionary Structures of Dedicated Software of Integrated Simulation Systems, in Problema optimal’nogo vybora v prikladnykh zadachakh (Optimal Choice Issue in Applied Problems), Voronezh: Voronezh. Gos. Univ., 1980, pp. 90–139.

    Google Scholar 

  65. Podvalny, S.L., Informatsionno-upravlyayushchie sistemy monitoringa slozhnykh ob”ektov (Information and Control Systems of Complex Objects Monitoring), Voronezh: Nauchnaya Kniga, 2010.

    Google Scholar 

  66. Podvalny, S.L., Multi-alternative Systems with Variable Structure for Automatic Control of Continuous Polymerization Processes, Sist. Upravlen. Inform. Tekhnol., 2011, no. 4.1, pp. 175–179.

    Google Scholar 

  67. Podvalny, S.L., Multi-Alternative Systems: A Review and Classification, Sist. Upravlen. Inform. Tekhn., 2012, no. 2, pp. 4–13.

    Google Scholar 

  68. Podvalny, S.L. and Ledeneva, T.M., The Multi-alternativeness Property as the Basis for Control Systems Intelligence, Vestn. Voronezh. Gos. Tekhn. Univ., 2012, vol. 8, no. 11, pp. 17–23.

    Google Scholar 

  69. Podvalny, S.L., Adjoint Systems Method for Gradient for Dynamic Systems Optimization, Vesnt. Voronezh. Gos. Tekhn. Univ., 2012, vol. 8, no. 12.1, pp. 57–62.

    Google Scholar 

  70. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  71. Polyak, B.T., Research on Automatic Control Theory, Probl. Upravlen., 2009, no. 3.1, pp. 2–18.

    Google Scholar 

  72. Pospelov, D.A., Situatsionnoe upravlenie. Teoriya i praktika (Situational Control: Theory and Practice), Moscow: Nauka: 1986.

    Google Scholar 

  73. Pustovoit, V.I., Chaos in Some Problems of Informatics, Usp. Sovr. Padioelektr. (Zarub. Padioelektr.), 1997, no. 10, p. 3.

    Google Scholar 

  74. Ratner, V.A., Block-Modular Principle of Organization and Evolution of Molecular Genetic Control Systems, Genetika, 1992, no. 2, pp. 5–23.

    Google Scholar 

  75. Ratner, V.A., Molecular-Genetic Control System, Priroda, 2001, no. 3, pp. 16–22.

    MathSciNet  Google Scholar 

  76. Red’ko, V.G., Problems of Intelligent Control and Management: General-Systemic, Evolutionary and Neural Network Aspects, in “Neiroinformatika–2002” (Neuroinformatics–2002), Moscow: MIFI, 2003, pp. 8–39.

  77. Red’ko, V.G., Models of Adaptive Behavior—Natural and Scientific Approach to Developments of Informational Technologies, Inform. Tekhn. Vychisl. Sist., 2004, no. 1, pp. 19–43.

    Google Scholar 

  78. Red’ko, V.G., Evolyutsiya, neironnye seti, intellekt. Modeli i kontseptsii evolyutsionnoi kibernetiki (Evolution, Neural Networks, Intelligence. Models and Concepts of Evolutionary Cybernetics), Moscow: Librokom, 2013.

    Google Scholar 

  79. Rutkovskaya, D., Pilin’skii, M., and Rutkovskii, L., Neironnye seti, geneticheskie algoritmy i nechetkie sistemy (Neural Networks, Genetic Algorithms, and Fuzzy Systems), Moscow: Goryachaya Liniya–Telekom, 2006.

    Google Scholar 

  80. Rutkovskii, V.Yu., Sukhanov, V.M., and Glumov, V.M., Combined Relay-Adaptive Control of Flexible Spacecraft Orientation, Autom. Remote Control, 2012, vol. 73, no. 12, pp. 2049–2058.

    MathSciNet  MATH  Google Scholar 

  81. Serkov, V.M. and Kornienko, M.S., Dynamics of Concentration of Sodium and Calcium Ions of the Blood of the Masked Greenling Hexagrammos Octogrammus Scorpaeniformes, Hexagrammidae at Alterations of the Environmental Salinity, Voprosy Ikhtiologii, 2003, no. 1, pp. 139–141.

    Google Scholar 

  82. Serkov, V.M. and Kornienko, M.S., Structural and Functional Characteristics of Chloride Cells of Bronchial Epithelium of Eastern Redfin Trybolodon Brandti (Fam. Cyprinidae) Adapted to Water of Different Salinity, in Nauch. Tr. 1 S”iezda Fiziol. Stran SNG (Proc. 1st Congr. Physiolog. of the CIS Countries), Moscow: Meditsina-Zdorov’e, 2005, p. 97.

    Google Scholar 

  83. Sklyar, B., Digital Communications: Fundamentals and Applications, Upper Saddle River: Prentice Hall, 2001, 2nd ed. Translated under the title Tsifrovaya svyaz’. Teoreticheskie osnovy i prakticheskoe primenenie, Moscow: Vil’yams, 2003.

    Google Scholar 

  84. Slinko, M.G., Osnovy i printsipy matematicheskogo modelirovaniya kataliticheskikh protsessov (Fundamentals and Principles of Mathematical Modeling for Catalytic Processes), Novosibirsk: Inst. Kataliza SO RAN, 2004.

    Google Scholar 

  85. Tkalich, S.A. and Vasiljev, E.M., Grounds and Possibilities of the Application of Artificial Neuronet in the Forecasting Systems, Elektrotekhn. Kompl. Sist. Upravlen., 2008, no. 2, pp. 37–38.

    Google Scholar 

  86. Turchin, V.F., Fenomen nauki. Kiberneticheskii podkhod k evolutsii (Phenomenon of Science: A Cybernetic Approach to Human Evolution), Moscow: ETS, 2000.

    Google Scholar 

  87. Utkin, V.I., Skol’zyashchie rezhimy i ikh primenenie v sistemakh c peremennoi strukturoi (Sliding Modes and Their Applications in Variable Structure Systems), Moscow: Nauka: 1974.

    Google Scholar 

  88. Utkin, V., A Conditionally Stable System with Variable Structure in a Work of A.M. Letov, Autom. Remote Control, 2011, vol. 72, no. 11, pp. 2348–2350.

    MathSciNet  MATH  Google Scholar 

  89. Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control of Dynamic Plants), Moscow: Nauka, 1981.

    Google Scholar 

  90. Khaikin, S., Neironnye seti: polnyi kurs (Neural Networks: A Full Course), Moscow: Vil’yams, 2006.

    Google Scholar 

  91. Tsykunov, A.M., Robust Control of Nonstationary Objects, Autom. Remote Control, 1996, vol. 57, no. 2, part 2, pp. 248–255.

    MathSciNet  MATH  Google Scholar 

  92. Chernodub, A.N. and Dzyuba, D.A., A Survey of Neurocontrol Methods, Probl. Programmir., 2011, no. 2, pp. 79–94.

    Google Scholar 

  93. Shalfeev, V.D., Osipov, G.V., Kozlov, A.K., and Volkovskii, A.R., Chaotic Oscillations: Generation, Synchronization, Control, Zarub. Radioelektron., Usp. Sovr. Radioelektron., 1997, no. 10, pp. 27–49.

    Google Scholar 

  94. Shannon, C., Raboty po teorii informatsii i kibernetike (Works in the Field of Theory of Information and Kibernetics), Moscow: Inostrannaya Literatura, 1963.

    Google Scholar 

  95. Ebeling, W., Engel, A., and Feistel, R., Physik der Evolutionsprozesse, Berlin: Akademie-Verlag, 1990. Translated under the title Fizika protsessov evolutsii. Sinergeticheskii podkhod, Moscow: Editorial URSS, 2003.

    Google Scholar 

  96. Eigen, M., Selforganization of Matter and the Evolution of Biological Macromolecules, Naturwissebschaften, 1971, vol. 58, no. 10, pp. 465–523. Translated under the title Samoorganizatsiya materii i evolutsiya biologicheskikh makromolekul, Moscow: Mir, 1973.

    Google Scholar 

  97. Eigen, M. and Winkler, R., Ludus Vitalis, München: Piper Verlag, 1975. Translated under the title Igra zhizni, Moscow: Nauka, 1979.

    Google Scholar 

  98. Ashby, W.R., Design for a Brain, London: Chapman & Hall, 1966, 2nd ed. Translated under the title Konstruktsiya mozga. Proiskhozhdenie adaptivnogo povedeniya, Moscow: Inostrannaya Literatura, 1962.

    Google Scholar 

  99. Ashby, W.R., An Introduction to Cybernetics, New York: Wiley, 1956. Translated under the title Vvedenie v kibernetiku, Moscow: KomKniga, 2005.

    Google Scholar 

  100. Yadykin, I.B., Shumskii, V.M., and Ovsepyan, F.A., Adaptivnoe upravlenie nepreryvnymi tekhnologicheskimi protsessami (Adaptive Control of Continuous Processes), Moscow: Energoatomizdat, 1985.

  101. Behe, M.J., Darwin’s Black Box: The Biochemical Challenge to Evolution, New York: Simon & Shuster, 1998.

    Google Scholar 

  102. Cope, E.D., The Primary Factors of Organic Evolution, Chicago: Open Court, 1904.

    Google Scholar 

  103. Furman, M. and Wang, X.-J., Similarity Effect and Optimal Control of Multiple-Choice Decision Making, Neuron., 2008, no. 6, pp. 1153–1168.

    Google Scholar 

  104. Hastie, T., Tibshirani, R., and Friedman, J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Berlin: Springer-Verlag, 2009.

    Google Scholar 

  105. Hsu, L. and Costa, R.R., Bursting Phenomena in Continuous-Time Adaptive Systems with a s-Modification, Automatica, 1998, no. 1, pp. 429–435.

    Google Scholar 

  106. Ioannou, P.A. and Kokotović, P.V., Instability Analysis and Improvement of Robustness of Adaptive Control, Automatica, 1984, no. 5, pp. 583–594.

    Google Scholar 

  107. Jacobs, G.H. and Nathans, J., The Evolution of Primate Color Vision, Sci. Am., 2009, April, pp. 32–39.

    Google Scholar 

  108. Javier Arturo Caballero Olvera, Multi-alternative Sequential Analysis as a Realistic Model of Biological Decision-Making, PhD Thesis, University of Sheffield, 2012.

  109. Kanellakopoulos, I., Kokotović, P.V., and Morse, As., A Toolkit for Nonlinear Feedback Design, Syst. Control Lett., 1992, vol. 18, pp. 83–92.

    MATH  Google Scholar 

  110. Lion, P.M., Rapid Identification of Linear and Nonlinear Systems, AAIAA, 1967, no. 5, pp. 1835–1842.

    Google Scholar 

  111. Rössler, O.E., Chemical Turbulence: Chaos in a Small Reaction-Diffusion System, Z. Naturforsch., 1976, no. 31a, pp. 1168–1172.

    Google Scholar 

  112. Sagan, C., Die Drachen von Eden. Das Wunder der menschlichen Intelligenz, München: Droemer Knaur, 1978.

    Google Scholar 

  113. Siemens, G., Connectivism: A Learning Theory for the Digital Age, Int. J. Instr. Tech. Distance Learn., 2005, no. 1, pp. 3–10.

    Google Scholar 

  114. Taillard, E.D., Robust Tabu Search for the Quadratic Assingnment Problem, Paral. Comput., 1991, no. 17, pp. 443–455.

    MathSciNet  Google Scholar 

  115. Taillard, E.D., Comparison of Iterative Searches for the Quadratic Assignment Problem, Location Sci., 1995, no. 3, pp. 87–105.

    MATH  Google Scholar 

  116. Yao, B. and Tomizuka, M., Adaptive Robust Control of SISO Nonlinear System in a Semi-Strict Feedback Form, Automatica, 1997, no. 5, pp. 893–900.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Podvalny.

Additional information

Original Russian Text © S.L. Podvalny, E.M. Vasiljev, 2014, published in Upravlenie Bol’shimi Sistemami, 2014, No. 48, pp. 6–58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podvalny, S.L., Vasiljev, E.M. A multi-alternative approach to control in open systems: Origins, current state, and future prospects. Autom Remote Control 76, 1471–1499 (2015). https://doi.org/10.1134/S0005117915080123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117915080123

Keywords

Navigation