Skip to main content
Log in

Dynamic graph models and their properties

  • System Analysis and Operations Research
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The review of a number of non-classical flow models and threshold models of spreading activity in a network is given. The description of flow models with nonstandard reachability is provided. Integer-valued threshold models to which “chip-firing game” and “probabilistic abacus” belongs are described. The model of self-organized criticality and its graph interpretation is described. We show the basic properties of a real “real-valued network” threshold model, and perform comparative analysis of these kinds of models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barabási, A.-L. and Albert, R., Emergence of Scaling in Random Networks, Science, 1999, vol. 86, no. 5439, pp. 509–512.

    Google Scholar 

  2. Watts, D.J. and Strogatz, Sh., Collective Dynamics of “Small-World” Networks, Nature, 1998, vol. 393, no. 6684, pp. 440–442.

    Article  Google Scholar 

  3. Kochkarov, A.A., Salpagarov, M.B., and Kochkarov, R.A., Modeling the Destruction of Complex Systems with Acyclic Structure, Upravlen. Bol’shimi Sist., 2007, no. 17, pp. 103–120.

    Google Scholar 

  4. Kochkarov, A.A., Salpagarov, M.B., and El’kanova, L.M., A Discrete Model of Structural Destruction for Complex Systems, Probl. Upravlen., 2007, no. 5, pp. 21–26.

    Google Scholar 

  5. Blanchard, Ph. and Volchenkov, D., Random Walks and Diffusions on Graphs and Databases: An Introduction, Springer Series in Synergetics, Berlin: Springer-Verlag, 2011.

    Book  Google Scholar 

  6. Kuznetsov, O.P., Uniform Resource Networks I. Complete Graphs, Autom. Remote Control, 2009, vol. 70, no. 11, pp. 1889–1900.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kuznetsov, O.P. and Zhilyakova, L.Yu., Two-Sided Resource Networks: A New Flow Model, Dokl. Akad. Nauk, 2010, vol. 433, no. 5, pp. 609–612.

    MathSciNet  Google Scholar 

  8. Zhilyakova, L.Yu., Asymmetrical Resource Networks. I. Stabilization Processes for Low Resources, Autom. Remote Control, 2011, vol. 72, no. 4, pp. 798–807.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhilyakova, L.Yu., Asymmetric Resource Networks. II. Flows for Large Resources and Their Stabilization, Autom. Remote Control, 2012, vol. 73, no. 6, pp. 1016–1028.

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhilyakova, L.Yu., Asymmetric Resource Networks. III. A Study of Limit States, Autom. Remote Control, 2012, vol. 73, no. 7, pp. 1165–1172.

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhilyakova, L.Yu., A Study of Euler Resource Networks, Upravlen. Bol’shimi Sist., 2013, no. 41, pp. 28–50.

    Google Scholar 

  12. Zhilyakova, L.Yu., Ergodic Cyclical Resource Networks. I, Upravlen. Bol’shimi Sist., 2013, no. 43, pp. 34–54.

    Google Scholar 

  13. Zhilyakova, L.Yu., Ergodic Cyclical Resource Networks. II, Upravlen. Bol’shimi Sist., 2013, no. 45, pp. 6–29.

    Google Scholar 

  14. Zhilyakova, L.Yu., Control for Limit States in Absorbing Resource Networks, Probl. Upravlen., 2013, no. 3, pp. 46–51.

    Google Scholar 

  15. Zhilyakova, L.Yu., Applying Resource Networks to Model the Spread of Substances in an Aquatic Medium, Probl. Upravlen., 2011, no. 2, pp. 46–51.

    Google Scholar 

  16. Adel’son-Vel’skii, G.M., Dinits, E.A., and Karzanov, A.V., Potokovye algoritmy (Flow Algorithms), Moscow: Nauka, 1975.

    Google Scholar 

  17. Ford, L.R., Jr. and Fulkerson, D.R., Flows in Networks, Princeton: Princeton Univ. Press, 1962. Translated under the title Potoki v setyakh, Moscow: Mir, 1966.

    Google Scholar 

  18. Swamy, M.N.S. and Thulasiraman, K., Graphs, Networks, and Algorithms, New York: Wiley, 1981. Translated under the title Grafy, seti and algoritmy, Moscow: Mir, 1984.

    MATH  Google Scholar 

  19. Sedgewick, R., Algorithms in C++, Reading: Addison-Wesley, 1998. Translated under the title Fundamental’nye algoritmy na C++. Algoritmy na graphakh, St. Petersburg: DiaSoftYuP, 2002.

    Google Scholar 

  20. Lazarev, A.A. and Gafarov, E.R., Teoriya raspisanii. Issledovanie zadach s otnosheniyami predshestvovaniya i resursnymi ogranicheniyami (Scheduling Theory. A Study of Problems with Precedence Relations and Resource Constraints), Moscow: Vychisl. Tsentr Ross. Akad. Nauk, 2007.

    Google Scholar 

  21. Lovasz, L. and Plummer, M.D., Matching Theory, Budapest: Akademiai Kiado, 1986. Translated under the title Prikladnye zadachi teorii grafov. Teoriya parosochetanii v matematike, fizike, khimii, Moscow: Mir, 1998.

    Google Scholar 

  22. Ahuja, R.K., Magnati, T.L., and Orlin, J.B., Network Flows: Theory, Algorithms and Applications, New Jersey: Prentice Hall, 1993.

    MATH  Google Scholar 

  23. Erzin, A.I. and Takhonov, I.I., The Balanced Flow Problem, Sib. Zh. Industr. Mat., 2006, vol. IX, no. 4 (28), pp. 50–63.

    MathSciNet  Google Scholar 

  24. Erzin, A.I. and Takhonov, I.I., Equilibrium Distribution of Resources in a Network Model, Sib. Zh. Industr. Mat., 2005, vol. VII, no. 3(23), pp. 58–68.

    MathSciNet  Google Scholar 

  25. Basangova, E.O. and Erusalimskii, Ya.M., Different Kinds of Mixed Reachability, in Algebra i diskretnaya matematika (Algebra and Discrete Mathematics), Elista: KGU, 1985, pp. 70–75.

    Google Scholar 

  26. Basangova, E.O. and Erusalimskii, Ya.M., Mixed Reachability on Partially Directed Graphs, in Vychislitel’nye sistemy i algoritmy (Computing Systems and Algorithms), Rostov-on-Don: Rostov. Gos. Univ., 1983, pp. 135–140.

    Google Scholar 

  27. Erusalimskii, Ya.M., Flows in Networks with Nonstandard Reachability, Izv. Vyssh. Uchebn. Zaved., Severo-Kavkaz. Region, Estestv. Nauki, 2012, no. 1, pp. 5–7.

    Google Scholar 

  28. Erusalimskii, Ya.M. and Petrosyan, A.G., Random Processes in Networks with Bipolar Magnetism, Izv. Vyssh. Uchebn. Zaved., Severo-Kavkaz. Region, Estestv. Nauki, 2005, no. 11, pp. 10–16.

    Google Scholar 

  29. Erusalimskii, Ya.M., Skorokhodov, V.A., Kuz’minova, M.V., and Petrosyan, A.G., Grafy s nestandartnoi dostizhimost’yu: zadachi, prilozheniya (Graphs with Nonstandard Reachability: Problems and Applications), Rostov-on-Don: Yuzhn. Federal. Univ., 2009.

    Google Scholar 

  30. Petrosyan, A.G., A Flow Problem in Multiproduct Networks with Nonstandard Reachability, in Sovremennye problemy matematicheskogo modelirovaniya (Modern Problems of Mathematical Modeling), Rostov-on-Don, 2005, pp. 334–340.

    Google Scholar 

  31. Petrosyan, A.G., Flows in Networks with Bipolar Reachability, Izv. Vyssh. Uchebn. Zaved., Severo- Kavkaz. Region, Estestv. Nauki, 2006, no. 3, pp. 32–37.

    Google Scholar 

  32. Erusalimskii, Ya.M. and Skorokhodov, V.A., Graphs with Circuit Reachability. Markov Processes and Flows in Networks, Izv. Vyssh. Uchebn. Zaved., Severo-Kavkaz. Region, Estestv. Nauki, 2003, no. 2, pp. 3–5.

    Google Scholar 

  33. Kuz’minova, M.V., Restricted Magnetic Reachability on Directed Graphs, Izv. Vyssh. Uchebn. Zaved., Severo-Kavkaz. Region, Estestv. Nauki, 2006, no. 6, pp. 12–26.

    Google Scholar 

  34. Erusalimskii, Ya.M. and Petrosyan, A.G., Multiproduct Flows in Networks with Nonstandard Reachability, Izv. Vyssh. Uchebn. Zaved., Severo-Kavkaz. Region, Estestv. Nauki, 2005, no. 6, pp. 8–16.

    Google Scholar 

  35. Erusalimskii, Ya.M., A General Method for Solving Reachability Problems on Directed Graphs, Izv. Vyssh. Uchebn. Zaved., Severo-Kavkaz. Region, Estestv. Nauki, 2000, no. 3, pp. 62–63.

    Google Scholar 

  36. Erusalimskii, Ya.M. and Skorokhodov, V.A., A General Approach to Nonstandard Reachability on Graphs, Izv. Vyssh. Uchebn. Zaved., Severo-Kavkaz. Region, Estestv. Nauki, 2005, Special Issue Pseudodifferential Equations and Problems of Mathematical Physics, pp. 64–67.

    Google Scholar 

  37. Erusalimskii, Ya.M. and Vodolazov, N.N., Nonstationary Flow in a Network, Vest. DGTU, 2009, vol. 9, no. 3, pp. 402–409.

    Google Scholar 

  38. Erusalimskii, Ya.M. and Vodolazov, N.N., Maximal Jump in a Network and Maximal Capacity of a Network, Izv. Vyssh. Uchebn. Zaved., Severo-Kavkaz. Region, Estestv. Nauki, 2010, no. 6, pp. 9–13.

    Google Scholar 

  39. Lovász, L. and Winkler, P., Mixing of Random Walks and Other Diffusions on a Graph, in Surveys in Combinatorics, Rowlinson, P., Ed., London Math. Soc., Lecture Notes Series 218, Cambridge Univ. Press, 1995, pp. 119–154.

    Google Scholar 

  40. Aiello, W., Awerbuch, B., Maggs, B., and Rao, S., Approximate Load Balancing on Dynamic and Asynchronous Networks, Proc. 25 ACM Sympos. Theory Comput., 1993, pp. 632–634.

    Google Scholar 

  41. Dasgupta, K., Singh, R., Viswanathan, B., et al., Social Ties and Their Relevance to Churn in Mobile Telecom Networks, Proc. 11 Int. Conf. Extending Database Technol. EDBT’08: Advances in Database Technology, ACM New York, USA, 2008, pp. 668–677.

    Chapter  Google Scholar 

  42. Gubanov, D.A., Novikov, D.A., and Chkhartishvili, A.G., Sotsial’nye seti. Modeli informatsionnogo vliyaniya, upravleniya i protivoborstva (Social Networks. Models of Informational Influence, Control, and Competition), Moscow: Fizmatlit, 2010.

    Google Scholar 

  43. Gubanov, D.A. and Novikov, D.A., Models of Unified Information Control in Uniform Social Networks, Upravlen. Bol’shimi Sist., Special issue 30.1 “Network Models in Control,” 2010, pp. 722–742.

    Google Scholar 

  44. Novikov, D.A., Setevye struktury i organizatsionnye sistemy (Network Structures and Organizational Systems), Moscow: Inst. Probl. Upravlen., 2003.

    Google Scholar 

  45. Brin, S. and Page, L., The PageRank Citation Ranking: Bringing Order to the Web, URL: http://infolab.stanford.edu/backrub/pageranksub.ps.

  46. Kussul’, N. and Soklov, A., Adaptive Anomaly Detection in the Behavior of the Users of Computer Systems with Variable Order Markov Chains, Part 2, Probl. Upravlen. Informat., 2003, no. 4, pp. 83–88.

    Google Scholar 

  47. Ye, N., A Markov Chain Model of Temporal Behavior for Anomaly Detection, Proc. 2000 IEEE Workshop Inform. Assurance Security United States Military Acad. West Point, New York, 6–7 June, 2000, pp. 171–174.

    Google Scholar 

  48. Agaev, R.P. and Chebotarev, P.Yu., Convergence and Stability in Problems of Reconciling Characteristics (a Survey of Fundamental Results), Upravlen. Bol’shimi Sist., Special Issue 30.1 “Network Models in Control,” 2010, pp. 470–505.

    Google Scholar 

  49. Agaev, R.P. and Chebotarev, P.Yu., The ProjectionMethod for Reaching Consensus and the Regularized Power Limit of a Stochastic Matrix, Autom. Remote Control, 2011, vol. 72, no. 12, pp. 2458–2476.

    Article  MathSciNet  MATH  Google Scholar 

  50. Anderson, R.J., Lovász, L., Shor, P.W., et al., Disks, Balls, and Walls: Analysis of a Combinatorial Game, Am. Math. Monthly, 1989, vol. 96, no. 6, pp. 481–493.

    Article  MATH  Google Scholar 

  51. Biggs, N.L., Chip-Firing and the Critical Group of a Graph, J. Algebr. Combinat., 1999, vol. 9, no. 1, pp. 25–45.

    Article  MathSciNet  MATH  Google Scholar 

  52. Biggs, N., The Tutte Polynomial as a Growth Function, J. Algebr. Combinat., 2000, vol. 10, no. 2, pp. 115–133.

    Article  MathSciNet  Google Scholar 

  53. Björner, A., Lovász, L., and Shor, P., Chip-Firing Games on Graphs, Eur. J. Combinat., 1991, vol. 12, pp. 283–291.

    Article  MATH  Google Scholar 

  54. Björner, A. and Lovász, L., Chip-Firing Game on Directed Graphs, J. Algebr. Combinat., 1992, no. 1, pp. 305–328.

    Article  MATH  Google Scholar 

  55. Spencer, J., Balancing Vectors in the Max Norm, Combinatorica, 1986, vol. 6, pp. 55–66.

    Article  MathSciNet  MATH  Google Scholar 

  56. Chung, F. and Ellis, R., A Chip-Firing Game and Dirichlet Eigenvalues, Discrete Math., 2002, vol. 257, no. 2-3, pp. 341–355.

    Article  MathSciNet  MATH  Google Scholar 

  57. Chung, F., Laplacians and the Cheeger Inequality for Directed Graphs, Ann. Combinat., 2005, vol. 9, no. 1, pp. 1–19.

    Article  MATH  Google Scholar 

  58. Lopez, C.M., Chip-Firing and the Tutte Polynomial, Ann. Combinat., 1997, vol. 1, no. 1, pp. 253–259.

    Article  MATH  Google Scholar 

  59. Prisner, E., Parallel Chip Firing on Digraphs, Complex Syst., 1994, no. 8, pp. 367–383.

    MathSciNet  MATH  Google Scholar 

  60. Sevast’yanov, B.A., Vetvyashchiesya protsessy (Branching Processes), Moscow: Nauka, 1971.

    Google Scholar 

  61. Burman, Yu.M., Mnogochlen Tatta i model’ sluchainykh klasterov (Tutte Polynomial and the Random Clusters Model), Mat. Prosv., Ser. 3, 11, Moscow: MTsNMO, 2007, pp. 47–60.

    Google Scholar 

  62. Engel, A., The Probabilistic Abacus, Educ. Stud. Math., 1975, vol. 6, no. 1, pp. 1–22.

    Article  MATH  Google Scholar 

  63. Engel, A., Why Does the Probabilistic Abacus Work?, Educ. Stud. Math., 1976, vol. 7, no. 1, pp. 59–69.

    Article  MATH  Google Scholar 

  64. Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Fizmatlit, 2004.

    Google Scholar 

  65. Lancaster, P., Theory of Matrices, New York: Academic, 1969. Translated under the title Teoriya matrits, Moscow: Nauka, 1982.

    MATH  Google Scholar 

  66. Bak, P., How Nature Works: The Science of Self-Organized Criticality, New York: Copernicus, 1996. Translated under the title Kak rabotaet priroda: Teoriya samoorganizovannoi kritichnosti, Moscow: Librokom, 2013.

    Google Scholar 

  67. Bak, P., Tang, C., and Wiesenfeld, K., Self-Organized Criticality, Phys. Rev. A, 1988, vol. 38, no. 1, pp. 364–374.

    Article  MathSciNet  MATH  Google Scholar 

  68. Bak, P. and Chen, K., Self-Organized Criticality, Scientif. Am., 1991, no. 264, pp. 46–53.

    Article  Google Scholar 

  69. Dhar, D., Self-Organized Critical State of Sandpile Automaton Models, Phys. Rev. Lett., 1990, vol. 64, pp. 1613–1616.

    Article  MathSciNet  MATH  Google Scholar 

  70. Dhar, D., The Abelian Sandpile and Related Models, Phys. A: Statist. Mechan. Appl., vol. 263, nos. 1–4, pp. 4–25.

  71. Dhar, D., Sadhu, T., and Chandra, S., Pattern Formation in Growing Sandpiles, Eur. Phys. Lett., 2009, vol. 85, no. 4, 48002, arXiv:0808.1732 [cond-mat.stat-mech].

    Article  Google Scholar 

  72. Dhar, D., Ruelle, P., Sen, S., and Verma, D.-N., Algebraic Aspects of Abelian Sandpile Models, 1994, arXiv:cond-mat/9408020.

    Google Scholar 

  73. Meester, R., Redig, F., and Znamenski, D., The Abelian Sandpile: a Mathematical Introduction, 2008, URL: http://www.cs.vu.nl/~rmeester/onderwijs/introduc-tion_spatial_models/sandpile2.pdf.

    Google Scholar 

  74. Redig, F., Mathematical Aspects of the Abelian Sandpile Model, June 2005, URL: http://www.math.leidenuniv.nl/~redig/sandpilelectures.pdf.

  75. Kemeny, J. and Snell, J., Finite Markov Chains, Princeton: Van Nostrand, 1960. Translated under the title Konechnye tsepi Markova, Moscow: Nauka, 1970.

    MATH  Google Scholar 

  76. Roberts, F.S., Discrete Mathematical Models with Application to Social, Biological, and Environmental Problems, Englewood Cliffs: Prentice Hall, 1976. Translated under the title Diskretnye matematicheskie modeli s prilozheniem k sotsial’nym, biologicheskim i ekologicheskim zadacham, Moscow: Nauka, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Zhilyakova.

Additional information

Original Russian Text © L.Yu. Zhilyakova, 2015, published in Avtomatika i Telemekhanika, 2015, No. 8, pp. 115–139.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilyakova, L.Y. Dynamic graph models and their properties. Autom Remote Control 76, 1417–1435 (2015). https://doi.org/10.1134/S000511791508007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511791508007X

Keywords

Navigation