Skip to main content
Log in

Robust feedback design for stabilization of nonlinear systems with sampled-data and quantized output: Atractive ellipsoid method

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

For a wide class of nonlinear systems, containing internal uncertainties as well as external bounded perturbations, the technique for robust feedback designing is suggested. The class of stabilizing dynamic feedbacks with a given linear structure is characterized by the corresponding BMI’s, which is shown to be reduced to the system of LMI’s. The optimal parameters of the feedback controllers realize the matrix solution to the conditional optimization problems under a set of specific linear matrix constraints. This optimization problem is solved by the standard MATLAB packages. Numerical examples illustrate the workability of the suggested approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng, C. and Tian, Y.-C., Networked H Control of Linear Systems with State Quantization, Inform. Sci., 2007, vol. 177, pp. 5763–5774.

    Article  MATH  MathSciNet  Google Scholar 

  2. Zhang, W.-A. and Yu., L., Output Feedback Stabilization of Networked Control Systems with Packet Dropouts, IEEE Trans. Automat. Control., 2007, vol. 52, no. 9, pp. 1705–1710.

    Article  MathSciNet  Google Scholar 

  3. Peng, C., Tian, Y.-C., and Yue, D., Output Feedback Control of Discrete-Time Systems in Networked Environments, IEEE Trans. Syst., Man, Cybern. A, 2011, vol. 41, no. 1, pp. 185–190.

    Article  Google Scholar 

  4. Shannon, C.E., A Mathematical Theory of Communication, Bell Syst. Tech. J., 1948, p. 27.

    Google Scholar 

  5. Nair, G.N. and Evans, R.J., Exponential Stabilisability of Finite-Dimensional Linear Systems with Limited Data Rates, Automatica, 2003, vol. 39, pp. 585–593.

    Article  MATH  MathSciNet  Google Scholar 

  6. Tatikonda, S. and Mitter, S., Control under Communication Constraints, IEEE Trans. Automat. Control., 2004, vol. 49, no. 7, pp. 1056–1068.

    Article  MathSciNet  Google Scholar 

  7. Matveev, A.S. and Savkin, A.V., An Analogue of Shannon Information Theory for Detection and Stabilization via Noisy Discrete Communication Channels, SIAM J. Control Optimiz., 2007, vol. 46, pp. 1323–1367.

    Article  MATH  MathSciNet  Google Scholar 

  8. Phat, V.N., Jiang, J., Savkin, A.V., et al., Robust Stabilization of Linear Uncertain Discrete-Time Systems via a Limited Capacity Communication Channel, Syst. Control Lett., 2004, vol. 53, pp. 347–360.

    Article  MATH  MathSciNet  Google Scholar 

  9. Gao, H. and Chen, T., A New Approach to Quantized Feedback Control Systems, Automatica, 2008, vol. 44, pp. 534–542.

    Article  MATH  MathSciNet  Google Scholar 

  10. Fu, M. and Xie, L., The Sector Bound Approach to Quantized Feedback Control, IEEE Trans. Automat. Control, 2005, vol. 50, no. 11, pp. 1698–1711.

    Article  MathSciNet  Google Scholar 

  11. Glover, J.D. and Schweppe, F.C., Control of Linear Dynamic Systems with Set Constrained Disturbance, IEEE Trans. Automat. Control, 1971, vol. 16, no. 5, pp. 411–423.

    Article  MathSciNet  Google Scholar 

  12. Polyak, B.T., Nazin, S., Durieu, C., et al., Ellipsoidal Parameter or State Estimation under Model Uncertainty, Automatica, 2004, vol. 40, pp. 1171–1179.

    Article  MATH  MathSciNet  Google Scholar 

  13. Kurzhanski, A.B. and Varaiya, P., Ellipsoidal Techniques for Reachability under State Constraints, SIAM J. Control Optimiz., 2006, vol. 45, pp. 1369–1394.

    Article  MATH  MathSciNet  Google Scholar 

  14. Davila, J. and Poznyak, A., Dynamic Sliding Mode Control Design Using Attracting Ellipsoid Method, Automatica, 2011, vol. 47, pp. 1467–1472.

    Article  MATH  MathSciNet  Google Scholar 

  15. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Control and Stability), Moscow: Nauka, 2002.

    Google Scholar 

  16. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh (Control for Linear Systems with External Disturbances: Linear Matrix Inequalities Technique), Moscow: LENAND, 2014.

    Google Scholar 

  17. Azhmyakov, V., Poznyak, A., and Juárez, R., On the Practical Stability of Control Processes Governed by Implicit Differential Equations: The Invariant Ellipsoid Based Approach Feedback Stabilization of Networked Control Systems with Packet Dropouts, J. Franklin Inst., 2013, no. 350, pp. 2229–2243.

    Google Scholar 

  18. Azhmyakov, V., Poznyak, A., and Gonzalez, O., On the Robust Control Design for a Class of Nonlinearly Affine Control Systems: The Attractive Ellipsoid Approach, J. Ind. Manage. Optimiz., 2013, vol. 9, no. 3, pp. 579–593.

    Article  MATH  MathSciNet  Google Scholar 

  19. Brockett, R.W. and Liberzon, D., Quantized Feedback Stabilization of Linear Systems, IEEE Trans. Automat. Control, 2000, vol. 47, no. 7, pp. 1279–1289.

    Article  MathSciNet  Google Scholar 

  20. Tian, E., Yue, D., and Chen, P., Quantized Output Feedback Control for Networked Control Systems, Inform. Sci., 2008, vol. 178, pp. 2734–2749.

    Article  MATH  MathSciNet  Google Scholar 

  21. Fridman, E. and Dambrine, M., Control under Quantization, Saturation and Delay: An LMI Approach, Automatica, 2009, vol. 45, pp. 2258–2264.

    Article  MATH  MathSciNet  Google Scholar 

  22. Mera, M., Poznyak, A., Azhmyakov, V., et al., Robust Control for a Class of Continuous-Time Dynamical Systems with Sample-Data Outputs, Proc. Int. Conf. on Electrical Eng., Comput. Sci. Automat., Toluca, Mexico, 2009, pp. 1–7.

    Google Scholar 

  23. Mera, M., Castanos, F., and Poznyak, A., Quantised and Sampled Output Feedback for Nonlinear Systems, Int. J. Control, 2014, vol. 87, no. 12, pp. 2475–2487.

    Article  MATH  MathSciNet  Google Scholar 

  24. Balandin, D.V. and Kogan, M.M., Sintez zakonov upravleniya na osnove lineinykh matrichnykh neravenstv (Linear Matrix Inequalities Based Control Design), Moscow: Fizmatgiz, 2007.

    Google Scholar 

  25. Blanchini, F., Set Invariance in Control—A Survey, Automatica, 1999, vol. 35, pp. 1747–1767.

    Article  MATH  MathSciNet  Google Scholar 

  26. Fridman, E., Descriptor Discretized Lyapunov Functional Method: Analysis and Design, IEEE Trans. Automat. Control, 2006, vol. 51, no. 5, pp. 890–897.

    Article  MathSciNet  Google Scholar 

  27. Fridman, E. and Niculescu, S.-I., On Complete Lyapunov-Krasovskii Functional Techniques for Uncertain Systems with Fast-Varying Delays, Int. J. Robust Nonlin. Control, 2009, vol. 18, pp. 364–374.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Poznyak.

Additional information

Original Russian Text © A.S. Poznyak, 2015, published in Avtomatika i Telemekhanika, 2015, No. 5, pp. 130–144.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poznyak, A.S. Robust feedback design for stabilization of nonlinear systems with sampled-data and quantized output: Atractive ellipsoid method. Autom Remote Control 76, 834–846 (2015). https://doi.org/10.1134/S0005117915050094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117915050094

Keywords

Navigation