Skip to main content
Log in

Synthesis of discrete H -controllers with given stability margin radius and settling time

  • Robust and Adaptive Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

For linear multivariable systems, we construct discrete output controllers that guarantee a given stability margin radius on the input or output of a control plant. Besides, given control time is also taken into account. We show that solving such problems reduces to a certain specially constructed standard H -optimization problem. A numerical solution has been implemented in MATLAB with the Robust Control Toolbox suite based on the method of linear matrix inequalities (LMI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keel, L.H. and Bhattacharyya, S.P., Robust, Fragile, or Optimal?, IEEE Trans. Automat. Control, 1997, vol. 42, no. 8, pp. 1098–1105.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bode, H.W., Network Analysis and Feedback Amplifier Design, New York: Van Nostrand, 1945. Translated under the title Teoriya tsepei i proektirovanie usilitelei s obratnoi svyaz’yu, Moscow: Inostrannaya Literatura, 1948.

    Google Scholar 

  3. Aleksandrov, A.G., Robustness Criteria for Nonstationary Automated Control Systems, in Analiticheskie metody sinteza regulyatorov: mezhvuz. nauchn. sb. (Analytic Methods of Controller Synthesis, Proc.), Saratov: Sarat. Politekh. Inst., 1980, pp. 3–14.

    Google Scholar 

  4. Aleksandrov, A.G., Stability Margins of the Systems of Optimal and Modal Control, Autom. Remote Control, 2007, vol. 68, no. 8, pp. 1296–1308.

    Article  MathSciNet  MATH  Google Scholar 

  5. Aleksandrov, A.G., Algebraic Nonrobustness Conditions, Autom. Remote Control, 2009, vol. 70, no. 9, pp. 1487–1498.

    Article  MathSciNet  MATH  Google Scholar 

  6. Aleksandrov, A.G., Stability Margins and Robust Stability, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2010, no. 6, pp. 32–41.

    Google Scholar 

  7. Safonov, M.G. and Athans, M., Gain and Phase Margin for Multiloop LQG Regulators, IEEE Trans. Automat. Control, 1977, vol. 22, no. 2, pp. 173–179.

    Article  MathSciNet  MATH  Google Scholar 

  8. Aleksandrov, A.G., Degree of Robustness for Systems with Devices for Recovering Phase Variables, in Analiticheskie metody sinteza regulyatorov: mezhvuz. nauchn. sb. (Analytic Methods of Controller Synthesis, Proc.), Saratov: Sarat. Politekh. Inst., 1977, pp. 105–118.

    Google Scholar 

  9. Doyle, J.C., Guaranteed Margins for LQG Regulators, IEEE Trans. Automat. Control, 1978, vol. 23, no. 4, pp. 756–757.

    Article  Google Scholar 

  10. Aleksandrov, A.G., A Direct Method for Analysic Controller Synthesis. Incomplete Degree of Observability, Izv. Vyssh. Uchebn. Zaved., Priborostr., 1978, no. 11, pp. 34–39.

    Google Scholar 

  11. Doyle, J.C. and Stein, G., Robustness with Observers, IEEE Trans. Automat. Control, 1979, vol. 24, no. 4, pp. 607–611.

    Article  MathSciNet  MATH  Google Scholar 

  12. Doyle, J.C. and Stein, G., Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis, IEEE Trans. Automat. Control, 1981, vol. 26, no. 1, pp. 4–16.

    Article  MATH  Google Scholar 

  13. Lehtomaki, N.A., Sandell, N.R., and Athans, M., Robustness Results in Linear-Quadratic Gaussian Based Multivariable Control Designs, IEEE Trans. Automat. Control, 1981, vol. 26, no. 1, pp. 75–92.

    Article  MathSciNet  MATH  Google Scholar 

  14. Aleksandrov, A.G., Construction of Discrete Control Systems with Given Properties, Autom. Remote Control, 1973, vol. 34, no. 9, pp. 1414–1423.

    MATH  Google Scholar 

  15. Safonov, M.G., Stability and Robustness of Multivariable Feedback Systems, Cambridge: MIT Press, 1980.

    MATH  Google Scholar 

  16. Shaked, U., Guaranteed Stability Margins for the Discrete-Time Linear-Quadratic Optimal Regulator, IEEE Trans. Automat. Control, 1986, vol. 31, no. 2, pp. 162–165.

    Article  MATH  Google Scholar 

  17. Aleksandrov, A.G., Sintez regulyatorov mnogomernykh sistem (Controller Synthesis for Multidimensional Systems), Moscow: Mashinostroenie, 1986.

    Google Scholar 

  18. Åström, K.J. and Wittenmark, B., Computer Controlled Systems. Theory and Design, Englewood Cliffs: Prentice Hall, 1984. Translated under the title Sistemy upravleniya s EVM, Moscow: Mir, 1987.

    Google Scholar 

  19. Anderson, B.D.O. and Moore, J.B., Optimal Control. Linear Quadratic Methods, New York: Prentice Hall, 1990.

    MATH  Google Scholar 

  20. Aleksandrov, A.G. and Chestnov, V.N., Properties of Analytically Constructed Systems with Digital Controllers, Izv. Vyssh. Uchebn. Zaved., Priborostr., 1987, no. 4, pp. 13–17.

    Google Scholar 

  21. Chestnov, V.N., Properties of Analytically Constructed Multidimensional Systems with Digital Controllers, Izv. Vyssh. Uchebn. Zaved., Priborostr., 1991, no. 10, pp. 11–18.

    Google Scholar 

  22. Chestnov, V.N., Modal Condrol for One-Dimensional Objects with a Given Radius of Stability Margins, in Tr. mezhd. nauchn. konf. “Analiticheskaya teoriya avtomaticheskogo upravleniya i ee prilozheniya” (Proc. Int. Conf. “Analytic Theory of Automated Control and Applications”), Saratov, 2000, pp. 159–164.

    Google Scholar 

  23. Stein, G. and Athans, M., The LQG/LTR Procedure for Multivariable Feedback Control Design, IEEE Trans. Automat. Control, 1987, vol. 32, no. 2, pp. 105–114.

    Article  MATH  Google Scholar 

  24. Maciejowski, J.M., Asymptotic Recovery for Discrete-Time System, IEEE Trans. Automat. Control, 1985, vol. 30, no. 6, pp. 602–605.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ishihara, T. and Takeda, H., Loop Transfer Recovery Techniques for Discrete-Time Optimal Regulator Using Prediction Estimators, IEEE Trans. Automat. Control, 1986, vol. 31, no. 12, pp. 1149–1151.

    Article  MATH  Google Scholar 

  26. Chestnov, V.N., Synthesis of Controllers for Multivariate Systems with a Given Radius of Stability Margins by the H -Optimization Method, Autom. Remote Control, 1999, vol. 60, no. 7, part 1, pp. 986–993.

    MathSciNet  MATH  Google Scholar 

  27. Anderson, B.D.O. and Moore, J.B., Linear Optimal Control, New York: Prentice Hall, 1971.

    MATH  Google Scholar 

  28. Chestnov, V.N. and Sobchinskii, A.V., Digital Controller Design with a Given Radius of Stability Margins, in Sb. nauchn. tr. “Robastnoe upravlenie i chastotnaya identifikatsiya” (Proc. “Robust Control and Frequency Identification”), Chestnov, V.N., Ed., Elektrostal: Elektrostal. Politekh. Inst., 2004, pp. 43–54.

    Google Scholar 

  29. Chestnov, V.N., Design of Robust H -Controllers of Multivariable Systems Based on the Given Stability Degree, Autom. Remote Control, 2007, vol. 68, no. 3, pp. 557–563.

    Article  MathSciNet  MATH  Google Scholar 

  30. Bhattcharyya, S.P., Keel, L.H., and Chapellat, H., Robust Control. The Parametric Approach, Upper Saddle River: Prentice Hall, 1995.

    Google Scholar 

  31. Polyak, B.T. and Tsypkin, Ya.Z., Robust Nyquist Test, Autom. Remote Control, 1992, vol. 53, no. 7, part 1, pp. 972–977.

    MathSciNet  Google Scholar 

  32. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  33. Kwakernaak, H., Robust Control and H -Optimization—Tutorial Paper, Automatica, 1993, vol. 29, no. 2, pp. 255–273.

    Article  MathSciNet  MATH  Google Scholar 

  34. Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., State-Space Solution to Standard H 2 and H Control Problem, IEEE Trans. Automat. Control, 1989, vol. 34, no. 8, pp. 831–846.

    Article  MathSciNet  MATH  Google Scholar 

  35. The Control Handbook, Levine, W.S., Ed., Boca Raton: CRC/IEEE Press, 1996.

    MATH  Google Scholar 

  36. Iglesias, P.A. and Glover, K., A State Space Approach to Discrete-Time H Control, Int. J. Control, 1991, vol. 54, no. 5, pp. 1031–1075.

    Article  MathSciNet  MATH  Google Scholar 

  37. Chestnov, V.N., Synthesizing H -Controllers for Multidimensional Systems with Given Accuracy and Degree of Stability, Autom. Remote Control, 2011, vol. 72, no. 10, pp. 2161–2175.

    Article  MathSciNet  MATH  Google Scholar 

  38. Balas, G.J., Chiang, R.Y., Packard, A., and Safonov, M.G., Robust Control Toolbox 3: User’s Guide/Natick, Natick: The MathWorks, 2010.

    Google Scholar 

  39. Chaikovskii, M.M. and Kurdyukov, A.P., Algebraicheskie uravneniya Rikkatti i lineinye matrichnye neravenstva dlya sistem diskretnogo vremeni (Algebraic Riccati Equations and Linear Matrix Inequalities for Discrete Time Systems), Moscow: Inst. Probl. Upravlen., 2005.

    Google Scholar 

  40. Balandin, D.V. and Kogan, M.M., Sintez zakonov upravleniya na osnove lineinykh matrichnykh neravenstv (Synthesis of Control Laws Based on Linear Matrix Inequalities), Moscow: Fizmatlit, 2007.

    Google Scholar 

  41. Boyd, S., Chaoui, L.E., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Chestnov.

Additional information

Original Russian Text © V.N. Chestnov, 2014, published in Avtomatika i Telemekhanika, 2014, No. 9, pp. 65–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chestnov, V.N. Synthesis of discrete H -controllers with given stability margin radius and settling time. Autom Remote Control 75, 1593–1607 (2014). https://doi.org/10.1134/S0005117914090057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117914090057

Keywords

Navigation