Advertisement

Automation and Remote Control

, Volume 75, Issue 7, pp 1301–1308 | Cite as

Polynomial transformation of Boolean functions: Analysis of computational algorithms

  • A. A. Akinin
  • A. V. Achkasov
  • S. L. Podval’nyiEmail author
  • S. V. Tyurin
Control Systems and Information Technologies

Abstract

This paper considers some realization features of polynomial factoring algorithms for n-argument Boolean functions, as well as analyzes their computational complexity and necessary hardware resources.

Keywords

Computational Complexity Remote Control Boolean Function Main Memory Binary Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirayama, T., Nagasawa, K., Nishitani, Y., and Shimizu, K., Double Fixed-Polarity Reed-Muller Expressions: A New Class of AND-EXOR Expressions for Compact and Testable Realization, IPSJ, 2001, vol. 42, no. 4, pp. 983–991.Google Scholar
  2. 2.
    Akinina, J.S. and Tyurin, S.V., An Alternative Approach to Testability of Two-Level User-Programmable Logical Matrices, Vestn. Voronezh. Gos. Tekh. Univ., 2003, vol. 8.3, pp. 32–35.Google Scholar
  3. 3.
    Akinina, J.S., Podval’nyi, S.L., and Tyurin, S.V., Method of Testable Realisation of Logical Converters, RF Patent 2413282, Bull. Izobret., 2011, no. 6.Google Scholar
  4. 4.
    Zhegalkin, I.I., The Technique of Calculation of Statements in Symbolic Logic, Mat. Sb., 1927, vol. 34, pp. 9–28.Google Scholar
  5. 5.
    Zakrebskii, A.D. and Toropov, N.R., Polinomial’naya realizatsiya chastichnykh bulevykh funktsii i sistem (Polynomial Realization of Partial Boolean Functions and Systems), Moscow: Editorial URSS, 2003.Google Scholar
  6. 6.
    Akinin, A.A., Akinina, J.S., Podval’nyi, S.L., and Tyurin, S.V., Automatization of the Polynomial Distortion of Boolean Functions Based on the Method of Indefinite Coefficients, Sist. Upravlen. Inf. Tekhn., 2011, no. 2(44), pp. 4–8.Google Scholar
  7. 7.
    Akinin, A.A., Akinina, J.S., and Tyurin, S.V., Boolean Function Polynomial Factoring Computerization Based on Finite-Difference Technique, Sist. Upravlen. Inf. Tekhn., 2011, no. 4(46), pp. 69–73.Google Scholar
  8. 8.
    Akinin, A.A., An Algorithm of the Fractal Polynomial Factoring of Boolean Functions, Vestn. Voronezh. Gos. Tekh. Univ., 2011, vol. 7, no. 11, pp. 85–88.Google Scholar
  9. 9.
    Akinin, A.A., Polynomial Factoring Computerization for Boolean Functions by the Method of Fractal Transformations, Tr. V mezhd. konf. “Intellektual’nyi potentsial molodykh uchenykh Rossii i zarubezh’ya” (Proc. V Int. Conf. “Intellectual Potential of Young Scientists of Russia and Foreign Countries”), Moscow: Sputnik+, 2012, pp. 9–18.Google Scholar
  10. 10.
    Akinin, A.A., Akinina, Yu.S., and Tyurin, S.V., Method for Binary and Vector Polynomial Factoring of Boolean Functions, Proc. All-Russia Sci. Tech. Conf. Problems of Advanced Micro- and Nanoelectronic System Development, Moscow: IPPM, 2012, pp. 55–60.Google Scholar
  11. 11.
    Podval’nyi, S.L., Multi-Alternative Systems: Review Classification, Sist. Upravlen. Inf. Tekhn., 2012, no. 2(48), pp. 4–13.Google Scholar
  12. 12.
    Matematicheskaya entsiklopediya (Encyclopedia of Mathematics), Vinogradov, I.M., Ed., Moscow: Sovetskaya Entsiklopediya, 1977, vol. 1 (A-G).Google Scholar
  13. 13.
    Krinitskii, N.A., Ravnosil’nye preobrazovaniya algoritmov i programmirovanie (Equivalence Transformations of Algorithms and Programming), Moscow: Sovetskoe Radio, 1970.Google Scholar
  14. 14.
    Gavrilov, G.P. and Sapozhenko, A.A., Zadachi i uprazhneniya po diskretnoi matematike (Problems and Exercises in Discrete Mathematics), Moscow: Fizmatlit, 2005.Google Scholar
  15. 15.
    Gorbatov, V.A., Gorbatov, A.V., and Gorbatova, M.V., Teoriya avtomatov (Automata Theory), Moscow: AST, Astrel’, 2008.Google Scholar
  16. 16.
    Bochmann, D. and Posthoff, C., Binäre dynamische Systeme, Wien: Oldenburg, 1981. Translated under the title Dvoichnye dinamicheskie sistemy, Moscow: Energoatomizdat, 1986.zbMATHGoogle Scholar
  17. 17.
    Matematicheskaya entsiklopediya (Encyclopedia of Mathematics), Vinogradov, I.M., Ed., Moscow: Sovetskaya Entsiklopediya, 1979, vol. 2 (D-K).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. A. Akinin
    • 1
  • A. V. Achkasov
    • 1
  • S. L. Podval’nyi
    • 1
    Email author
  • S. V. Tyurin
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations