Advertisement

Automation and Remote Control

, Volume 75, Issue 7, pp 1267–1282 | Cite as

Stability polyhedra of optimal permutation of jobs servicing

  • Yu. N. SotskovEmail author
  • N. G. Egorova
Topical Issue
  • 47 Downloads

Abstract

Consideration was given to minimization of the sum of weighted instants of completing servicing of n customers by a single server, provided that the duration of jobs servicing may assume any real value from a given numerical interval. An algorithm of complexity O(n) was developed to construct a polyhedron (parallelepiped) of the optimality of permutation of servicing of n jobs that is contained in the domain of stability of the same permutation and comprises the polyhedron of its stability. For the randomly generated problems, experimental comparison was carried out of the dimensions and relative volumes of the optimality polyhedra and stability of the optimal permutation of servicing n jobs under randomly generated scenarios.

Keywords

Remote Control Optimal Schedule Uncertain Data Deterministic Problem Stability Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sotskov, Yu.N. and Sotskova, N.Yu., Teoriya raspisanii. Sistemy s neopredelennymi chislovymi parametrami (Schedule Theory. Systems with Uncertain Numerical Parameters), Minsk: Ob”ed. Inst. Probl. Informatiki Nats. Akad. Nauk Belarusi, 2004.Google Scholar
  2. 2.
    Sotskov, Y.N., Tanaev, V.S., and Werner, F., Stability Radius of an Optimal Schedule: A Survey and Recent Developments, in Ind. Appl. Combinat. Optim., Boston: Kluwer, 1998, pp. 72–108.Google Scholar
  3. 3.
    Sotskov, Yu.N., Egorova, N.G., Lai, T.-C., and Werner, F., The Stability Box in Interval Data for Minimizing the Sum of Weighted Completion Times, in SIMULTECH 2011: Proc. Int. Conf. Simulat. Model. Method., Technol. Appl., Noordwijkerhout, Netherlands, July 29–31, 2011, pp. 14–23.Google Scholar
  4. 4.
    Egorova, N.G., Sotskov, Yu.N., and Kosenkov, A.A., Permutation with the Greatest Stability Parallelepiped for Servicing Interval-duration Jobs, Informatika, 2012, no. 4, pp. 69–80.Google Scholar
  5. 5.
    Sotskov, Yu.N. and Lai, T.-C., Minimizing Total Weighted Flow Time under Uncertainty Using Dominance and a Stability Box, Comput. Oper. Res., 2012, vol. 39, pp. 1271–1289.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., et al., Optimization and Approximation in Deterministic Sequencing and Scheduling. A Survey, Ann. Discr. Math., 1976, vol. 5, pp. 287–326.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Smith, W.E., Various Optimizers for Single-Stage Production, Nav. Res. Logist. Quarterly, 1956, vol. 3, no. 1, pp. 59–66.CrossRefGoogle Scholar
  8. 8.
    Daniels, R.L. and Kouvelis, P., Robust Scheduling to Hedge Against Processing Time Uncertainty in Single-Stage Production, Manag. Sci., 1995, vol. 41, no. 2, pp. 363–376.CrossRefzbMATHGoogle Scholar
  9. 9.
    Sotskov, Y.N., Egorova, N.G., and Lai, T.-C., Minimizing Total Weighted Flow Time of a Set of Jobs with Interval Processing Times, Math. Comput. Model, 2009, vol. 50, pp. 556–573.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lai, T.-C., Sotskov, Y.N., Sotskova, N., et al., Optimal Makespan Scheduling with Given Bounds of Processing Times, Math. Comput. Model, 1997, vol. 26, pp. 67–86.zbMATHMathSciNetGoogle Scholar
  11. 11.
    Sotskov, Yu.N., Egorova, N.G., and Werner, F., Minimizing Total Weighted Completion Time with Uncertain Data: A Stability Approach, Autom. Remote Control, 2010, vol. 71, no. 10, pp. 2038–2057.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lai, T.-C. and Sotskov, Y.N., Sequencing with Uncertain Numerical Data for Makespan Minimization, J. Oper. Res. Soc., 1999, vol. 50, pp. 230–243.CrossRefzbMATHGoogle Scholar
  13. 13.
    Sotskov, Y.N., Wagelmans, A.P.M., and Werner, F., On the Calculation of the Stability Radius of an Optimal or an Approximate Schedule, Ann. Oper. Res., 1998, vol. 83, pp. 213–252.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Sotskov, Y.N., Sotskova, N.Y., and Werner, F., Stability of an Optimal Schedule in a Job Shop, Omega, 1997, vol. 25, no. 4, pp. 397–414.CrossRefGoogle Scholar
  15. 15.
    Sotskov, Y.N., Dolgui, A., and Portmann, M.-C., Stability Analysis of Optimal Balance for Assembly Line with Fixed Cycle Time, Eur. J. Oper. Res., 2006, vol. 168, no. 3, pp. 783–797.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Sotskov, Y.N., Stability of an Optimal Schedule, Eur. J. Oper. Res, 1991, vol. 55, pp. 91–102.CrossRefzbMATHGoogle Scholar
  17. 17.
    Matsveichuk, N.M., Sotskov, Y.N., Egorova, N.G., et al., Schedule Execution for Two-machine Flow-shop with Interval Processing Times, Math. Comput. Model., 2009, vol. 49, nos. 5–6, pp. 991–1011.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Sotskova, N.Yu. and Tanaev, V.S., On Realization of the Optimal Schedule under Uncertainty of Operation Duration, Dokl. Belarus. Nat. Akad. Nauk, 1998, vol. 42, no. 5, pp. 8–12.zbMATHMathSciNetGoogle Scholar
  19. 19.
    Lai, T.-C., Sotskov, Y.N., Sotskova, N.Y., et al., Mean Flow Time Minimization with Given Bounds of Processing Times, Eur. J. Oper. Res., 2004, vol. 159, no. 3, pp. 558–573.CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Egorova, N.G. and Sotskov, Yu.N., Minmization of the Sum of Weighted Instants of Completion of Job Servicing with Interval Duration, Informatika, 2008, no. 3, pp. 5–16.Google Scholar
  21. 21.
    Sotskov, Yu.N., Lai, T.-C., and Werner, F., Measures of Problem Uncertainty for Scheduling with Interval Processing Times, OR Spectrum, 2013, vol. 35, pp. 659–689.CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Sotskov, Yu.N. and Matsveichuk, N.M., Uncertainty Measure for the Bellman-Johnson Problem with Interval Processing Times, Cybern. Syst. Anal., 2012, vol. 48, no. 5, pp. 641–652.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.United Institute of Problems of InformaticsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations