Skip to main content
Log in

Control of limit states in absorbing resource networks

  • Control Sciences
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper studies the properties of resource networks with sink vertices called absorbing resource networks. In the presence of at least two sinks, the resource distribution in the limit state depends on the initial state of the network. We formulate two control problems in such networks. Sinks are treated as goal vertices. Control vertices represent some subset of vertices in the transition component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuznetsov, O.P., Uniform Resource Networks. I. Complete Graphs, Autom. Remote Control, 2009, vol. 70, no. 11, pp. 1889–1900.

    Article  MATH  MathSciNet  Google Scholar 

  2. Kuznetsov, O.P. and Zhilyakova, L.Yu., Bidirectional Resource Networks: A New Flow Model, Dokl. Math., 2010, vol. 82, no. 1, pp. 643–646.

    Article  MATH  MathSciNet  Google Scholar 

  3. Zhilyakova, L.Yu., Asymmetrical Resource Networks. I. Stabilization Processes for Low Resources, Autom. Remote Control, 2011, vol. 72, no. 4, pp. 798–807.

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhilyakova, L.Yu., Asymmetric Resource Networks. II. Flows for Large Resources and Their Stabilization, Autom. Remote Control, 2012, vol. 73, no. 6, pp. 1016–1028.

    Article  Google Scholar 

  5. Zhilyakova, L.Yu., The Study of Euler Resource Networks, Upravlen. Bol’sh. Sist., 2013, no. 41, pp. 28–50.

    Google Scholar 

  6. Ford, L.R., Jr. and Fulkerson, D.R., Flows in Networks, Princeton: Princeton Univ. Press, 1962. Translated under the title Potoki v setyakh, Moscow: Mir, 1966.

    MATH  Google Scholar 

  7. Ahuja, R.K., Magnanti, T.L., and Orlin, J.B., Network Flows: Theory, Algorithms, and Applications, New Jersey: Prentice Hall, 1993.

    MATH  Google Scholar 

  8. Lovasz, L. and Winkler, P., Mixing of Random Walks and Other Diffusions on a Graph, in Surveys in Combinatorics, Rowlinson, P., Ed., London Math. Soc., Lecture Notes Series, 218, Cambridge: Cambridge Univ. Press, 1995, pp. 119–154.

    Google Scholar 

  9. Blanchard, Ph. and Volchenkov, D., Random Walks and Diffusions on Graphs and Databases: An Introduction, Springer Series in Synergetics, Berlin: Springer-Verlag, 2011.

    Book  Google Scholar 

  10. Björner, A. and Lovasz, L., Chip-firing Game on Directed Graphs, J. Algebr. Combinatorics, 1992, no. 1, pp. 305–328.

    Google Scholar 

  11. Prisner, E., Parallel Chip Firing on Digraphs, Complex Syst., 1994, no. 8, pp. 367–383.

    Google Scholar 

  12. Ivashkevich, E.V. and Priezzhev, V.B., Introduction to the Sandpile Model, Physica A, 1998, vol. 254, pp. 97–116.

    Article  Google Scholar 

  13. Speer, E.R., Asymmetric Abelian Sandpile Models, J. Statist. Phys., 1993, vol. 71, no. 1–2, pp. 61–74.

    Article  MATH  MathSciNet  Google Scholar 

  14. Bak, P., How Nature Works: The Science of Self-Organized Criticality, New York: Copernicus, 1996.

    Book  MATH  Google Scholar 

  15. Bak, P., Tang, C., and Wiesenfeld, K., Self-organized Criticality, Phys. Rev. A, 1988, vol. 38, pp. 364–374.

    Article  MATH  MathSciNet  Google Scholar 

  16. Dhar, D., Self-organized Critical State of Sandpile Automaton Models, Phys. Rev. Lett., 1990, vol. 64, pp. 1613–1616.

    Article  MATH  MathSciNet  Google Scholar 

  17. Kemeny, J. and Snell, J., Finite Markov Chains, Princeton: Van Nostrand, 1960. Translated under the title Konechnye tsepi Markova, Moscow: Nauka, 1970.

    MATH  Google Scholar 

  18. Gantmacher, F.R., The Theory of Matrices, New York: Chelsea, 1959.

    MATH  Google Scholar 

  19. Seneta, E., Non-negative Matrices and Markov Chains, New York: Springer-Verlag, 2006.

    MATH  Google Scholar 

  20. Rothblum, U.G., Computation of the Eigenprojection of a Nonnegative Matrix at Its Spectral Radius, in Stochastic Systems: Modeling, Identification and Optimization II, Mathematical Programming Study Series, Wets, R.J.-B., Ed., 1976, vol. 6, pp. 188–201.

    MathSciNet  Google Scholar 

  21. Agaev, R.P. and Chebotarev, P.Yu., On Determining the Eigenprojection and Components of a Matrix, Autom. Remote Control, 2002, vol. 63, no. 10, pp. 1537–1545.

    Article  MATH  MathSciNet  Google Scholar 

  22. Chebotarev, P.Yu. and Agaev, R.P., On the Asymptotics of Consensus Protocols, Upravlen. Bol’sh. Sist., 2013, no. 43, pp. 55–77.

    Google Scholar 

  23. Kuznetsov, A.V., Sakovich, V.A., and Kholod, N.N., Vysshaya matematika. Matematicheskoe programmirovanie (Higher Mathematics: Mathematical Programming), Minsk: Vysshaya Shkola, 1994.

    Google Scholar 

  24. Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge: Cambridge Univ. Press, 2004.

    Book  MATH  Google Scholar 

  25. Lawson, Ch.L. and Hanson, R.L., Solving Least Squares Problems, Englewood Cliffs: Prentice-Hall, 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.Yu. Zhilyakova, 2013, published in Problemy Upravleniya, 2013, No. 3, pp. 51–59.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhilyakova, L.Y. Control of limit states in absorbing resource networks. Autom Remote Control 75, 360–372 (2014). https://doi.org/10.1134/S0005117914020143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117914020143

Keywords

Navigation