Skip to main content
Log in

Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Consideration was given to the problems of variational calculus and optimal control admitting impulsive controls and, correspondingly, discontinuous solutions. The evolution of the notion of singular space-time transformation beginning from the problem of classical variational calculus and ending with the problems of optimal control at the phase of impact was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal Control), Moscow: Nauka, 1979.

    MATH  Google Scholar 

  2. Vapnyarskii, I.B., Theory of Existence of the Optimal Control in the Boltz Problem, Some of Its Applications, and the Necessary Conditions for Optimality of the Sliding and Special Modes, Zh. Vychisl. Mat. Mat. Fiz., 1967, vol. 7, no. 2, pp. 259–283.

    MathSciNet  Google Scholar 

  3. Gamkrelidze, R.V., On Optimal Sliding Modes, Dokl. Akad. Nauk SSSR, 1962, vol. 134, no. 6, pp. 1243–1245.

    MathSciNet  Google Scholar 

  4. Filippov, A.F., On Some Issues of the Theory of Optimal Control, Vestn.Mosk. Gos. Univ., Ser. Mat., 1959, no. 2, pp. 25–32.

    Google Scholar 

  5. Krotov, V.F., Discontinuous Solutions of the Variational Problems, Izv. Vyssh. Uchebn. Zaved., Mat., 1960, no. 5 (18), pp. 86–98.

    Google Scholar 

  6. Krotov, V.F., On Discontinuous Solutions of the Variational Problems, Izv. Vyssh. Uchebn. Zaved., Mat., 1961, no. 2 (21), pp. 75–89.

    Google Scholar 

  7. Krotov, V.F., Methods for Solving Variational Problems on the Basis of the Sufficient Conditions for an Absolute Minimum. I, II, Autom. Remote Control, 1962, vol. 23, no. 12, pp. 1473–1484; 1963, vol. 24, no. 5, pp. 539–553.

    MathSciNet  Google Scholar 

  8. Krotov, V.F., Bukreev, V.Z., and Gurman, V.I., Novye metody variatsionnogo ischisleniya v dinamike poleta (New Methods of Variational Calculus in Flight Dynamics), Moscow: Mashinostroenie, 1969.

    Google Scholar 

  9. Koshelev, V.N. and Morozov, S.F., Sufficient Conditions for Existence of Discontinuous Solutions for the Simplest Integral of Variational Calculus. I, II, Izv. Vyssh. Uchebn. Zaved., Mat., 1967, no. 11, pp. 21–30; no. 12, pp. 38–46.

    Google Scholar 

  10. Koshelev, V.N. and Morozov, S.F., Theorems of Existence 0f Discontinuous Solutions in the Spatial Variational Problems, Izv. Vyssh. Uchebn. Zaved., Mat., 1970, no. 5, pp. 47–52.

    Google Scholar 

  11. Koshelev, V.N. and Morozov, S.F., On the Necessary Conditions for Extremum of the Variational Problems in the Nonparametric Form on Collection of Discontinuous Functions, Izv. Vyssh. Uchebn. Zaved., Mat., 1970, no. 12, pp. 37–46.

    Google Scholar 

  12. Ivashkin, V.V., Energy-optimal Transfers from the Hyperbolic Orbit under no Constraints on the Transfer Time, Kosm. Issled., 1966, vol. 4, no. 1, pp. 17–25.

    Google Scholar 

  13. Ivashkin, V.V., Optimizatsiya kosmicheskikh manevrov pri ogranicheniyakh na rasstoyaniya do planet (Optimization of Space Maneuvers under Constraints on the Distances to Planets), Moscow: Nauka, 1975.

    Google Scholar 

  14. Krasovskii, N.N., Teoriya upravleniya dvizheniem (Motion Control Theory), Moscow: Nauka, 1968.

    Google Scholar 

  15. Lawden, D.F., Optimal Trajectories for Space Navigation, Butterworths, London, 1963. Translated under the title Optimal’nye traektorii dlya kosmicheskoi navigatsii, Moscow: Mir, 1966.

    MATH  Google Scholar 

  16. Mason, J.D., Dickerson, W.D., and Smith, D.B., A Variational Method for Optimal Staging, AIAA J., 1965, vol. 3, no. 11, pp. 2007–2012.

    Google Scholar 

  17. Neimark, Yu.I. and Fufaev, N.A., Painlevé Paradoxes and Dynamics of the Brake Shoe, Prikl. Mat. Mekh., 1995, vol. 59, no. 3, pp. 366–375.

    MathSciNet  Google Scholar 

  18. Okhotsimskii, D.E., On the Theory of Rocket Motion, Prikl. Mat. Mekh., 1946, vol. 10, no. 2, pp. 251–272.

    Google Scholar 

  19. Okhotsimskii, D.E. and Eneev, T.M., Some Variational Problem Associated with Launching the Earth Satellite, Usp. Fiz. Nauk, 1957, vol. 13, no. 1a, pp. 5–32.

    Google Scholar 

  20. Rishel, R.W., An Extended Pontriagin Principle for Control Systems Whose Control Laws Contain Measures, J. SIAM, Ser. A, Control, 1965, vol. 3, no. 2, pp. 191–205.

    MATH  MathSciNet  Google Scholar 

  21. Rishel, R.W., An Example Concerning Rockets Capable of Impulsive Thrust, SIAM J. Control, 1966, vol. 4, no. 4, pp. 740–744.

    MATH  MathSciNet  Google Scholar 

  22. Longman, R.W. and Cooper, C.A., Optimal Selection of Observation Times in the Linear-Quadratic Gaussian Control Problem, J. Optim. Theory Appl., 1983, vol. 39, no. 1, pp. 47–58.

    MATH  MathSciNet  Google Scholar 

  23. Ivanov, V.K., Matematicheskoe modelirovanie i optimizatsiya luchevoi terapii opukholei (Mathematical Modeling and Optimization of the Tumor Radiotherapy), Moscow: Energoatomizdat, 1986.

    Google Scholar 

  24. Ivanov, V.K., Miller, B.M., Kitsul, P.I., et al., Mathematical Model of the Process of Treatment of the Organism Affected by Malignant Neoplasms, in Biologicheskie aspekty teorii upravleniya. Tr. Inst. Probl. Upravlen. (Avtom. Telemekh.) (Biological Aspects of the Control Theory) Proc. Inst. Control Problems (Automat. Remote Control)), Petrovskii, A.M., Ed., Moscow: Inst. Probl. Upravlen., 1976, no. 8, pp. 15–22.

    Google Scholar 

  25. Lenhart, S. and Workman, J.T., Optimal Control Applied to Biological Models, London: Chapman, 2007.

    MATH  Google Scholar 

  26. Mailleret, L. and Grognard, F., Global Stability and Optimisation of a General Impulsive Biological Control Model, Math. Biosci., 2009, vol. 221, pp. 91–100.

    MATH  MathSciNet  Google Scholar 

  27. Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (Elements of Theory of Functions and Functional Analysis), Moscow: Nauka, 1976.

    Google Scholar 

  28. Miller, B.M. and Rubinovich, E.Ya., Optimizatsiya dinamicheskikh sistem s impul’snymi upravleniyami (Optimization of Dynamic Systems with Impulsive Controls), Moscow: Nauka, 2005.

    Google Scholar 

  29. Miller, B. and Rubinovich, E., Impulsive Control in Continuous and Discrete-Continuous Systems, New York: Kluwer, 2003.

    MATH  Google Scholar 

  30. Doležal, V., Kurzweil, J., and Vorel, Z., The Dirac Function in Non-Linear Differential Equations, Summaries Apl. Mat., 1958, vol. 3, pp. 348–359.

    Google Scholar 

  31. Kurzweil, J., Generlized Ordinary Differential Equations, Chechosl. Math. J., 1958, vol. 8, no. 3, pp. 360–388.

    MathSciNet  Google Scholar 

  32. Kurzweil, J., Linear Differential Equations with Distributions as Coefficients, Bull. Acad. Polon. Sci., Ser. Math., 1959, vol. 7, no. 9, pp. 557–560.

    MATH  MathSciNet  Google Scholar 

  33. Kurzweil, J., Generalized Ordinary Differential Equations. Not Absolutely Continuous Solutions, in Ser. in Real Analysis, 11, New Jersey: World Scientific, 2012.

    Google Scholar 

  34. Miller, B.M., Optimality Condition in the Control Problem for a System Described by a Measure Differential Equation, Autom. Remote Control, 1982, vol. 43, no. 6, part 1, pp. 752–761.

    MATH  Google Scholar 

  35. Miller, B.M., Sufficient Optimality Condition for Linear Control of Plants Described by Differential Equations with a Measure, Autom. Remote Control, 1984, vol. 45, no. 9, part 2, pp. 1171–1180.

    MATH  Google Scholar 

  36. Miller, B.M., Optimal Control of Observations in the Filtering of Diffusion Processes. I, II, Autom. Remote Control, 1985, vol. 46, no. 2, part 2, pp. 207–213; no. 6, part 1, pp. 745–754.

    MATH  Google Scholar 

  37. Miller, B.M., Conditions for the Optimality in Problems of Generalized Control. I, II, Autom. Remote Control, 1992, vol. 53, no. 3, part 1, pp. 362–370; no. 4 part 1, pp. 505–513.

    Google Scholar 

  38. Miller, B.M., Method of Discontinuous Time Change in Problems of Control of Impulse and Discrete-Continuous Systems, Autom. Remote Control, 1993, vol. 54, no. 12, part 1, pp. 1727–1750.

    Google Scholar 

  39. Miller, B.M., Generalized Solutions of Nonlinear Optimization Problems with Impulse Controls. I, II, Autom. Remote Control, 1995, vol. 56, no. 4, part 1, pp. 505–516; no. 5, part 1, pp. 657–669.

    MATH  Google Scholar 

  40. Miller, B.M., Controllable Systems with Impact Actions, Sovrem. Mat. Fundament. Napravl., 2011, vol. 42, pp. 166–178.

    Google Scholar 

  41. Miller, B.M. and Rubinovich, E.Ya., Impulsive Control with Impulsive Actions of Two Types, Autom. Remote Control, 2009, vol. 70, no. 11, pp. 1795–1813.

    MATH  MathSciNet  Google Scholar 

  42. Sarychev, A.V., Integral Representation of the Trajectories of Controllable System with Generalized Right Side, Differ. Uravn., 1988, vol. 24, no. 9, pp. 1551–1564.

    MathSciNet  Google Scholar 

  43. Gurman, V.I., Printsip rasshireniya v zadachakh upravleniya (Principle of Extension in Control Problems), Moscow: Nauka, 1985.

    MATH  Google Scholar 

  44. Zavalishchin, S.T., Supplement to the Lowden Theory, Prikl. Mat. Mekh., 1989, vol. 53, no. 5, pp. 731–738.

    MathSciNet  Google Scholar 

  45. Zavalishchin, S.T., Speed-optimal Interorbital Flight, in Obobshchennye funktsii v zadachakh upravleniya i differentsial’nykh uravneniyakh (Generalized Functions in Problems of Control and Differential Equations), Sverdlovsk: Ural. Otd. Akad. Nauk SSSR, 1992, pp. 17–29.

    Google Scholar 

  46. Zavalishchin, S.T. and Sesekin, A.N., On Singular Solutions in Optimization Problems with Quadratic Performance Criterion, Differ. Uravn., 1975, vol. 11, no. 4, pp. 665–671.

    Google Scholar 

  47. Zavalishchin, S.T. and Sesekin, A.N., Impul’snye protsessy. Modeli i prilozheniya (Impulsive Processes. Models and Applications), Moscow: Nauka, 1991.

    MATH  Google Scholar 

  48. Zavalishchin, S.T., Sesekin, A.N., and Drozdenko, S.E., Dinamicheskie sistemy s impul’snoi strukturoi (Dynamic Systems with Impulsive Structure), Sverdlovsk: Sredn.-Ural. Kn. Izd., 1983.

    Google Scholar 

  49. Zavalishchin, S.T. and Sukhanov, V.I., Prikladnye zadachi sinteza i proektirovaniya upravlyayushchikh algoritmov (Applied Problems of Design of Control Algorithms), Moscow: Nauka, 1985.

    MATH  Google Scholar 

  50. Sesekin, A.N., Discontinuous Solutions of Integral Equations and their Estimates, in Obobshchennye funktsii i differentsial’nye uravneniya (Generalized Functions and Differential Equations), Sverdlovsk: Ufim. Nauchn. Tsentr Akad. Nauk SSSR, 1985, pp. 62–68.

    Google Scholar 

  51. Sesekin, A.N., On Nonlinear Differential Equations Containing Products of Discontinuous Functions by Generalized Functions, in Obobshchennye funktsii i differentsial’nye uravneniya (Generalized Functions and Differential Equations), Sverdlovsk: Ufim. Nauchn. Tsentr Akad. Nauk SSSR, 1985, pp. 48–61.

    Google Scholar 

  52. Sesekin, A.N., On Continuous Dependence on the Right Sides and Stability of the Approximating Solutions of Differential Equations Containing Products of Discontinuous Functions by Generalized Functions, Differ. Uravn., 1986, vol. 22, no. 11, pp. 2009–2011.

    MATH  MathSciNet  Google Scholar 

  53. Sesekin, A.N., On Optimal Control of Linear System with Bounded Resource, in Nelineinye zadachi v obobshchennykh funktsiyakh (Nonlinear Problems in Generalized Functions), Sverdlovsk: UNTS AN SSSR, 1988, pp. 77–84.

    Google Scholar 

  54. Sesekin, A.N., On Nonlinear Differential Equations in the Class of Bounded-variation Functions, Differ. Uravn., 1989, vol. 25, no. 11, pp. 1925–1932.

    MathSciNet  Google Scholar 

  55. Sesekin, A.N., Discontinuous Solutions of Ordinary Differential Equations with Neutral Aftereffect, in Mezhvuz. sb. nauch. rabot. Kraevye zadachi (Collected Papers. Boundary Problems), Perm: Perm. Politekh. Inst., 1991, pp. 107–112.

    Google Scholar 

  56. Sesekin, A.N., On the Best Trajectory in Integral Vortex of Discontinuous Solutions, in Obobshchennye funktsii i differentsial’nye uravneniya (Generalized Functions and Differential Equations), Sverdlovsk: Ural. Otd. Akad. Nauk SSSR, 1992, pp. 78–84.

    Google Scholar 

  57. Sesekin, A.N., Impulse Extension in the Problem of the Optimization of the Energy Functional, Autom. Remote Control, 1992, vol. 53, no. 8, part 1, pp. 1174–1182.

    MathSciNet  Google Scholar 

  58. Sesekin, A.N., Properties of the Attainability Set of a Dynamic System with Impulsive Control, Autom. Remote Control, 1994, vol. 55, no. 2, part 1, pp. 190–195.

    MATH  MathSciNet  Google Scholar 

  59. Sesekin, A.N., On the Set of Discontinuous Solutions of Nonlinear Differential Equations, Izv. Vyssh. Uchebn. Zaved., Mat., 1994, vol. 38, no. 6, pp. 83–89.

    MathSciNet  Google Scholar 

  60. Dykhta, V.A., Variation Principle ofMaximum for Impulsive and SpecialModes in Problems of Controllinear Optimization, Izv. Vyssh. Uchebn. Zaved., Mat., 1991, no. 11, pp. 89–91.

    Google Scholar 

  61. Dykhta, V.A., Pulse-Trajectory Extension of the Problem of Optimal Control, in Razvitie i primenenie metoda funktsii Lyapunova (Development and Application of the Lyapunov Function Method), Novosibirsk: Nauka, 1992, pp. 170–182.

    Google Scholar 

  62. Dykhta, V.A., Optimal Pulse Control in Models of Economics and Quantum Electronics, Autom. Remote Control, 1999, vol. 60, no. 11, part 2, pp. 1603–1613.

    MATH  MathSciNet  Google Scholar 

  63. Dykhta, V.A. and Kolokol’nikova, G.A., Minimum Conditions on the Set of Sequences in the Degenerate Variational Problem, Mat. Zametki, 1983, vol. 34, no. 5, pp. 735–744.

    MathSciNet  Google Scholar 

  64. Dykhta, V.A. and Samsonyuk, O.N., Optimal’noe impul’snoe upravlenie s prilozheniyami (Optimal Impulsive Control with Applications) Moscow: Fizmatlit, 2000.

    MATH  Google Scholar 

  65. Bressan, A. and Rampazzo, F., On Differential Systems with Quadratic Impulses and Their Applications to Lagrangian Mechanics, SIAM J. Control Optim., 1993, vol. 31, pp. 1206–1220.

    MathSciNet  Google Scholar 

  66. Bressan, A. and Rampazzo, F., Impulsive Control Systems without Commutativity Assumptions, J. Optim. Theory Appl., 1994, vol. 81, no. 3, pp. 435–457.

    MATH  MathSciNet  Google Scholar 

  67. Bressan, A. and Rampazzo, F., Moving Constraints as Stabilizing Controls in Classical Mechanics, Arch. Rational Mech. Anal., 2010, vol. 196, pp. 97–141.

    MATH  MathSciNet  Google Scholar 

  68. Bressan, A. and Wang, Z., On the Controllability of Lagrangian Systems by Active Constraints, J. Diff. Equat., 2009, vol. 247, no. 2, pp. 543–563.

    MATH  MathSciNet  Google Scholar 

  69. Bressan, A., Incompatibilità dei teoremi di existenza e di Unicita del moti per un tipo molto comune e regolare di sistemi meccanici, Annali della Scuola Normale Superiore di Pisa. Ser. 3, 1960, vol. 14, pp. 333–348.

    MathSciNet  Google Scholar 

  70. Bressan, A., On the Application of Control Theory to Certain Problems of Lagrangian Systems, and Hyper-Impulsive Motion for These. I, II, Atti. Acc. Lincei Rend. fis, Ser. 8, 1988, vol. 82, pp. 91–105, 107–118.

  71. Bressan, A., Hiper-Impulsive Motion and Controllizable Coordinates for Lagrangian Systems, Atti. Acc. Lincei Rend. fis, Ser. 8, 1989, vol. 19, pp. 197–246.

    Google Scholar 

  72. Bressan, A. and Motta, M., A Class of Mechanical Systems with Some Coordinates as Controls. A Reduction of Certain Optimization Problems for Them. Solution Methods, Atti. Acc. Lincei Rend., Ser. 9, 1993, vol. 2, pp. 7–30.

    MathSciNet  Google Scholar 

  73. Bressan, A. and Motta, M., Some Optimization Problems with a Monotone Impulsive Character. Approximation by Means of Structural Discontinuities, Atti. Acc. Lincei Rend., Ser. 9, 1994, vol. 2, pp. 31–52.

    MATH  MathSciNet  Google Scholar 

  74. Bressan, A. and Motta, M., Structural Discontinuities to Approximate some Optimization Problems with a Nonmonotone Impulsive Character, Rend. Mat. Acc. Lincei, Ser. 9, 1995, vol. 6, pp. 93–109.

    MATH  MathSciNet  Google Scholar 

  75. Motta, M., Viscosity Solutions of HJB Equations with Unbounded Data and Characteristic Points, Appl. Math. Optim., 2004, vol. 49, pp. 1–26.

    MATH  MathSciNet  Google Scholar 

  76. Motta, M. and Rampazzo, F., Space-Time Trajectories of Nonlinear Systems Driven by Ordinary and Impulsive Control, Diff. Integr. Equat., 1995, vol. 8, no. 2, pp. 269–288.

    MATH  MathSciNet  Google Scholar 

  77. Motta, M. and Rampazzo, F., Dynamic Programming for Nonlinear Systems Driven by Ordinary and Impulsive Control, SIAM J. Control Optim., 1996, vol. 34, no. 1, pp. 199–225.

    MATH  MathSciNet  Google Scholar 

  78. Motta, M. and Rampazzo, F., Nonlinear System with Unbounded Controls and State Constraints: A Problem of Proper Extension, NoDEA-Nonlinear Diff. Equat. App., 1996, vol. 3, pp. 191–216.

    MATH  MathSciNet  Google Scholar 

  79. Babitskii, V.I., Teoriya vibro-udarnykh sistem: priblizhennye metody (Theory of Vibro-impact Systems: Approximate Methods), Moscow: Nauka, 1978.

    Google Scholar 

  80. Astashev, V. and Babitsky, V., Ultrasonic Processes andMachines Dynamics, Control and Applications, in Foundations of Engineering Mechanics Ser., Berlin: Springer, 2007.

    Google Scholar 

  81. Babitsky, V.I., Theory of Vibro-Impact Systems and Applications, Berlin: Springer, 1998.

    MATH  Google Scholar 

  82. Dankowicz, H. and Zhao, X., Local Analysis of Co-dimension-one and Co-dimension-two Grazing Bifurcations in Impact Microactuators, Physica D, 2005, vol. 202, nos. 3–4, pp. 238–257.

    MATH  MathSciNet  Google Scholar 

  83. Dankowicz, H. and Svahn, F., On the Stabilizability of Near-Grazing Dynamics in Impact Oscillators, Int. J. Robust Nonlinear Control, 2007, vol. 17, pp. 1405–1429.

    MATH  MathSciNet  Google Scholar 

  84. Ragulskis, K., Bansevicious, R., Barauskas, R., et al., Vibrimotors for Precision Microrobots, New York: Hemisphere, 1988.

    Google Scholar 

  85. Uchino, K., Piezoelectric Actuators and Ultrasonic Motors, Boston: Kluver, 1997.

    Google Scholar 

  86. Acary, V. and Brogliato, B., Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics, Berlin: Springer, 2008.

    MATH  Google Scholar 

  87. Kokavecz, J., Heszler, P., Tóth, Z., et al., Effect of Step Function-like Perturbation on Intermittent Contact Mode Sensors: A Response Analysis, Appl. Surface Sci., 2003, vol. 210, pp. 123–127.

    Google Scholar 

  88. Kokavecz, J., Marti, O., Heszler, P., et al., Imaging Bandwidth of the Tapping Mode Atomic Force Microscope Probe, Physical Review B, 2006, vol. 73, pp. 155403–155501.

    Google Scholar 

  89. Bohringer, K.-F., Goldberg, K., Cohn, M., et al., Parallel Microassembly with Electrostatic Force Fields, in Proc. IEEE Int. Conf. on Robotics and Automation, 1998, vol. 2, pp. 1204–1211.

    Google Scholar 

  90. Bohringer, K.-F., Donald, B.R., and McDonald, N.C., What Programmable Vector Fields Can (and Cannot) Do: Force Field Algorithms for MEMS and Vibratory Plate Parts Feeders, in Proc. IEEE Int. Conf. on Robotics and Automation, 1996, vol. 1, pp. 822–829.

    Google Scholar 

  91. Bohringer, K.-F., Donald, B.R., Mihailovich, R., et al., Theory of Manipulation and Control for Microfabricated Actuator Arrays, in Proc. IEEE Micro Electro Mechanical Systems, 1994, pp. 102–107.

    Google Scholar 

  92. Lee, A.P., Pisano, A.P., and Lim, M.G., Impact, Friction, and Wear Testing of Microsamples of Polycrystalline Silicon, in Proc. Matherials Research Society Sympos. “Smart Materials Fabrication and Materials for Micro-Electro-Mechanical Systems,” 1992, vol. 276, pp. 67–78.

    Google Scholar 

  93. Zhao, X., Dankowicz, H., Reddy, C., et al., Modeling and Simulation Methodology for Impact Microactuators, J. Micromech. Microeng., 2004, vol. 14, pp. 775–784.

    Google Scholar 

  94. Zhao, X. and Dankowicz, H., Control of Impact Microactuators for Precise Positioning, Trans. ASME. J. Comput. Nonlinear Dynamics, 2006, vol. 1, pp. 65–70.

    MATH  Google Scholar 

  95. Zhao, X. and Dankowicz, H., Unfolding Degenerate Grazing Dynamics in Impact Actuators, Nonlinearity, 2006, vol. 19, pp. 399–418.

    MATH  MathSciNet  Google Scholar 

  96. Aoustin, Y., Formal’sky, A., and Chevallereau, C., Virtual Quadruped: Mechanical Design, Control, Simulation and Experimentation, J. Math. Sci., 2007, vol. 147, no. 2, pp. 6552–6568.

    MATH  MathSciNet  Google Scholar 

  97. McClamroch, N.H., A Singular Perturbation Approach to Modeling and Control of Manipulators Constrained by a Stiff Environment, in Proc. IEEE Conf. Decision Control, Tampa, Florida, USA, 1989, vol. 3, pp. 2407–2411.

    MathSciNet  Google Scholar 

  98. Fridman, L., Aoustin, Y., and Plestan, F., Decomposition of Existence and Stability Analysis of Periodic Solutions of Systems with Impacts: Application to Bipedal Walking Robot, in Proc. 47th IEEE Conf. Decision Control, Cancun, Mexico, Dec. 9–11, 2008, pp. 5238–5243.

  99. Grizzle, J.W., Abba, G., and Plestan, F., Asymptotically Stable Walking for Biped Robots: Analysis via Systems with Impulse Effects, IEEE Trans. Automat. Control, 2000, vol. 46, no. 1, pp. 51–64.

    MathSciNet  Google Scholar 

  100. Mills, J.K. and Nguyen, C., Robotic Manipulator Collision: Modeling and Simulation, Trans. ASME J. Dyn. Sys. Meas. Control, 1993, vol. 114, no. 4, pp. 650–659.

    Google Scholar 

  101. Pfeifer, F. and Glocker, C., Multi-Body Dynamics with Unilateral Constraints, New York: Wiley, 1996.

    Google Scholar 

  102. Pfeifer, F., Mechanical System Dynamics, in Lect. Notes in Applied and Computational Mechanics, Berlin: Springer, 1st ed., 2005, 2008, corrected 2nd ed.

    Google Scholar 

  103. Razmadzé, A., Sur les solutions discontinues dans le calcul des variations, Math. Annalen, 1925, vol. 94, pp. 1–52.

    MATH  Google Scholar 

  104. McShane, E.J., Existence Theorems for Ordinary Problems of the Calculus of Variations, I, II, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1934, Ser. 2, vol. 3, no. 2, pp. 183–211; nos. 3–4, pp. 287–315.

    MathSciNet  Google Scholar 

  105. McShane, E.J., Some Existence Theorems in the Calculus of Variations. III. Existence Theorems for Nonregular Problems, Trans. Am. Math. Soc., 1939, vol. 45, no. 1, pp. 151–171.

    MathSciNet  Google Scholar 

  106. Ioffe, A.D. and Tikhomirov, V.M., Extensions of Variational Problem, Tr. Mosk. Mat. Obcshch., 1968, vol. 18, pp. 187–246.

    MATH  Google Scholar 

  107. Young, L.C., Lectures on the Salculus of Mariations and Optimal Control Theory, Philadelphia: Saunders, 1969. Translated under the title Lektsii po variatsionnomu ischisleniyu i teorii optimal’nogo upravleniya, Moscow: Mir, 1974.

    Google Scholar 

  108. Warga, J., Variational Problems with Unbounded Controls, J. SIAM, Ser. A, Control, 1965, vol. 3, no. 2, pp. 428–438.

    Google Scholar 

  109. Krasnosel’skii, M.A. and Pokrovskii, A.V., Vibrostability of Solution of Differential Equations, Dokl. Akad. Nauk SSSR, 1970, vol. 195, pp. 544–547.

    MathSciNet  Google Scholar 

  110. Krasnosel’skii, M.A. and Pokrovskii, A.V., Vibrostable Differential Equations with Continuous Right Side, Tr. Mosk. Mat. Obshch., 1972, vol. 27, pp. 93–112.

    MathSciNet  Google Scholar 

  111. Krotov, V.F. and Gurman, V.I., Metody i zadachi optimal’nogo upravleniya (Methods and Problems of Optimal Control), Moscow: Nauka, 1973.

    Google Scholar 

  112. Miller, B.M., On Stability of Solutions of Ordinary Differential Equations with Measure, Usp. Mat. Nauk, 1978, vol. 33, no. 2(200), p. 198.

    MATH  Google Scholar 

  113. Cartan, H., Calcul différentiel. Formes différentielles., Paris: Hermann, 1967. Translated under the title Differentsial’noe ischislenie i differentsial’nye formy, Moscow: Mir, 1971.

    Google Scholar 

  114. Miller, B.M., Questions of Designing Optimal Control in Systems Obeying Differential Equations with Measure, Cand. Sci. (Phys.-Mat.) Dissertation, Moscow: Moscow Inst. of Physics and Technology, 1977.

    Google Scholar 

  115. Gurman, V.I., Optimality Controlled Process with Unbounded Derivatives, Autom. Remote Control, 1972, vol. 33, no. 12, pp. 1924–1930.

    MATH  Google Scholar 

  116. Warga, J., Optimal Control of Differential and Functional Equations, New York: Academic, 1972. Translated under the title Optimal’noe upravlenie differentsial’nymi i funktsional’nymi uravneniyami, Moscow: Nauka, 1979.

    MATH  Google Scholar 

  117. Miller, B.M., The Generalized Solutions of Nonlinear Optimization Problems with Impulse Control, SIAM J. Control Optim., 1996, vol. 34, pp. 1420–1440.

    MATH  MathSciNet  Google Scholar 

  118. Miller, B.M. and Rubinovich, E.Ya., Optimal Impulse Control Problem with Constrained Number of Impulses, Math. Comput. Simul., 1992, vol. 34, pp. 23–49.

    MathSciNet  Google Scholar 

  119. Arutyunov, A.V., Karamzin, D.Yu., and Pereira, F.L., A Nondegenerate Maximum Principle for the Impulse Control Problem with State Constraints, SIAM J. Control Optim., 2005, vol. 43, pp. 1812–1843.

    MATH  MathSciNet  Google Scholar 

  120. Karamzin, D.Yu., Necessary Conditions of the Minimum in an Impulse Optimal Control Problem, J. Math. Sci., 2006, vol. 139, no. 6, pp. 7087–7150.

    MATH  MathSciNet  Google Scholar 

  121. Motta, M. and Sartori, C., Discontinuous Solutions to Unbounded Differential Inclusions under State Constraints. Applications to Optimal Control Problems, Set-Valued Anal., 1999, vol. 7, pp. 295–322.

    MATH  MathSciNet  Google Scholar 

  122. Matos, A.C., Pereira, F.L., and Silva, G.N., Hamilton-Jacobi Conditions for an Impulsive Control Problem, Nonlinear Control Syst., 2002, no. 2, pp. 1297–1302.

    Google Scholar 

  123. Daryin, A.N., Kurzhanski, A.B., and Seleznev, A.V., A Dynamic Programming Approach to the Impulse Control Synthesis Problem, in Proc. Joint 44th IEEE CDC-ECC, Seville, 2005, pp. 8215–8220.

  124. Fraga, S.L. and Pereira, F.L., On the Feedback Control of Impulsive Dynamic Systems, in Proc. 47th IEEE Conf. Decision and Control Cancun., Mexico, Dec. 9–11, 2008, pp. 2135–2140.

  125. Daryin, A.N. and Kurzhanski, A.B., Dynamic Programming for Impulse Control, Ann. Rev. Control, 2008, vol. 32, no. 2, pp. 213–227.

    Google Scholar 

  126. Dykhta, V.A. and Samsonyuk, O.N., Hamilton-Jacoby Inequalities in the Problems of Control of Impulsive Dynamic Systems, Tr. Steklov Mat. Inst., 2010, vol. 271, pp. 93–110.

    MathSciNet  Google Scholar 

  127. Dykhta, V.A. and Samsonyuk, O.N., Canonical Theory of Optimality of Impulsive Processes, in Sovrem. Mat. Fundament. Napravl., 2011, vol. 42, pp. 118–124.

    MathSciNet  Google Scholar 

  128. Stefanova, A.V., Hamilton-Jacoby-Bellman Equation in Nonlinear Problems of Impulsive Control, Tr. Inst. Mat. Mekh., Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1998, vol. 5, pp. 301–318.

    MATH  Google Scholar 

  129. Pereira, F.L., Silva, G.N., and Oliveira, V., Invariance for Impulsive Control Systems, Autom. Remote Control, 2008, vol. 69, no. 5, pp. 788–800.

    MATH  MathSciNet  Google Scholar 

  130. Dykhta, V. and Samsonyuk, O., Some Applications of Hamilton-Jacobi Inequalities for Classical and Impulsive Optimal Control Problems, Eur. J. Control, 2011, vol. 17, pp. 55–69.

    MATH  MathSciNet  Google Scholar 

  131. Painlevé, P., Leçons sur le frottement, Paris: Hermann, Translated under the title Lektsii o trenii, Moscow: GITTL, 1954.

  132. Bressan, A., Singular Limits for Impulsive Lagrangian Systems with Dissipative Sources, in Differential Equations, Chaos and Variational Problems. Progress in Nonlinear Differential Equations and Their Applications, Basel: Birkhauser, 2007, vol. 75, pp. 79–103.

    Google Scholar 

  133. Bressan, A., Impulsive Control of Lagrangian Systems and Locomotion in Fluids, Discrete Contin. Dyn. Syst., 2008, vol. 20, no. 1, pp. 1–35.

    MATH  MathSciNet  Google Scholar 

  134. Formal’skii, A.M., Modelirovanie antropomorfnykh mekhanizmov (Modeling of Anthropomorphic Organisms), Moscow: Nauka, 1982.

    Google Scholar 

  135. Ivanov, A.P., Dinamika sistem s mekhanicheskimi soudareniyami (Dynamics of Systems with Mechanical Collisions), Moscow: Mezhd. Programma Obrazovaniya, 1997.

    Google Scholar 

  136. Kozlov, V.V. and Treshchev, D.V., Billiardy (Geneticheskoe vvedenie v teoriyu udarov) (Billiards (A Genetic Introduction to the Impact Theory)), Moscow: Mosk. Gos. Univ., 1991.

    MATH  Google Scholar 

  137. Brogliato, B., Nonsmooth Impact Mechanics. Models, Dynamics and Control. Communications and Control Engineering Ser., London: Springer, 1999.

    Google Scholar 

  138. Leine, R.I. and Van de Wouw, N., Stability and Convergence of Mechanical Systems with Unilateral Constraints, in Lect. Notes in Applied and Computational Mechanics, 2008, vol. 36, Pfeiffer, F. and Wriggers, P., Eds., Berlin: Springer, 2008.

    Google Scholar 

  139. Studer, C., Numerics of Unilateral Contacts and Friction. Modeling and Numerical Time Integration in Non-Smooth Dynamics, Berlin: Springer, 2009.

    MATH  Google Scholar 

  140. Deryabin, M.V., On Realization of Unidirectional Constraints, Prikl. Mat. Mekh., 1994, vol. 58, no. 6, pp. 136–140.

    MathSciNet  Google Scholar 

  141. Ivanov, A.P., On Problem of Constrained Impact, Prikl. Mat. Mekh., 1997, vol. 61, no. 3, pp. 355–368.

    MATH  Google Scholar 

  142. Ivanov, A.P., On Discontinuous Motions in Systems with Unidirectional Relations, Prikl. Mat. Mekh., 1998, vol. 62, no. 3, pp. 383–392.

    MathSciNet  Google Scholar 

  143. Ivanov, A.P., Stability of Mechanical Systems Subject to Impulsive Actions, Prikl. Mat. Mekh., 2001, vol. 65, no. 4, pp. 631–644.

    MATH  Google Scholar 

  144. Ivanov, A.P., Singularities in Dynamics of Systems with Nonideal Constraints, Prikl. Mat. Mekh., 2003, vol. 67, no. 2, pp. 212–221.

    MATH  MathSciNet  Google Scholar 

  145. Deryabin, M.V. and Kozlov, V.V., On Theory of Systems with Unidirectional Constraints, Prikl. Mat. Mekh., 1995, vol. 59, no. 4, pp. 531–539.

    MathSciNet  Google Scholar 

  146. Kozlov, V.V., On Realization of Relations in Dynamics, Prikl. Mat. Mekh., 1992, vol. 56, no. 4, pp. 692–698.

    MathSciNet  Google Scholar 

  147. Ballard, P., The Dynamic of Discrete Mechanical Systems with Perfect Unilateral Constraints, Arch. Rational Mech. Anal., 2000, vol. 154, pp. 199–274.

    MATH  MathSciNet  Google Scholar 

  148. Ballard, P., Formulation and Well-Posedness of the Dynamics of Rigid-Body Systems with Perfect Unilateral Constraints, Phil. Trans. R. Soc. Lond., 2001, vol. A 359, pp. 2327–2346.

    MathSciNet  Google Scholar 

  149. Ballard, P., Dynamics of Rigid Bodies with Unilateral or Frictional Constraints, in Advances in Mechanics and Mathematics, Dordrecht: Kluwer, 2002, pp. 3–87.

    Google Scholar 

  150. Ballard, P. and Basseville, S., Existence and Uniqueness for Dynamical Unilateral Contact with Coulomb Friction: A Model Problem, Math. Model. Numer. Anal., 2005, vol. 39, no. 1, pp. 59–77.

    MATH  MathSciNet  Google Scholar 

  151. Paoli, L., An Existence Result for Vibrations with Unilatral Constraints: Case of Non-Smooth Set of Constraints, Math. Models Methods Appl. Sci., 2000, vol. 10, no. 6, pp. 815–831.

    MATH  MathSciNet  Google Scholar 

  152. Paoli, L., Problèmes de vibro-impact: étude de la dépendance par rapport aux données, C.R. Acad. Sci. Paris, I, 2004, vol. 339, pp. 27–32.

    MATH  MathSciNet  Google Scholar 

  153. Paoli, L., Continuous Dependence on Data for Vibro-Impact Problems, Math. Models Methods Applied Sci., 2005, vol. 15, no. 1, pp. 53–93.

    MATH  MathSciNet  Google Scholar 

  154. Paoli, L., An Existence Result for Non-Smooth Vibro-Impact problems, J. Diff. Equat., 2005, vol. 211, pp. 247–281.

    MATH  MathSciNet  Google Scholar 

  155. Paoli, L., Time-Stepping Approximation of Rigid-Body Dynamics with Perfect Unilateral Constraints. I: The Inelastic Impact Case, Arch. Ration. Mech. Anal., 2010, vol. 198, no. 2, pp. 457–503.

    MATH  MathSciNet  Google Scholar 

  156. Paoli, L., Time-Stepping Approximation of Rigid-Body Dynamics with Perfect Unilateral Constraints. II: The Partially Elastic Impact Case, Arch. Ration. Mech. Anal., 2010, vol. 198, no. 2, pp. 505–568.

    MATH  MathSciNet  Google Scholar 

  157. Paoli, L. and Schatzman, M., Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d’énergie, Math. Modelling Numer. Anal., 1993, vol. 27, pp. 673–717.

    MATH  MathSciNet  Google Scholar 

  158. Paoli, L. and Schatzman, M., Resonance in Impact Problems, Math. Comput. Modelling, 1998, vol. 28, no. 4–8, pp. 385–406.

    MATH  MathSciNet  Google Scholar 

  159. Paoli, L. and Schatzman, M., Approximation et existence en vibro-impact, C.R. Acad. Sci. Paris, I, 1999, vol. 329, pp. 1103–1107.

    MATH  MathSciNet  Google Scholar 

  160. Paoli, L. and Schatzman, M., Non Convex Aspects of Dynamics with Impact. From Convexity to Nonconvexity, in Nonconvex Optim. Appl., Dordrecht: Kluwer, 2001, vol. 55, pp. 207–222.

    Google Scholar 

  161. Paoli, L. and Schatzman, M., Penalty Approximation for Non-Smooth Constraints in Vibroimpact, J. Diff. Equat., 2001, vol. 177, pp. 375–418.

    MATH  MathSciNet  Google Scholar 

  162. Paoli, L. and Schatzman, M., A Numerical Scheme for Impact Problems. I: The One-Dimensional Case, SIAM J. Numer. Anal., 2002, vol. 40, no. 2, pp. 702–733.

    MATH  MathSciNet  Google Scholar 

  163. Paoli, L. and Schatzman, M., A Numerical Scheme for Impact Problems. II: The Multidimensional Case, SIAM J. Numer. Anal., 2002, vol. 40, no. 2, pp. 734–768.

    MATH  MathSciNet  Google Scholar 

  164. Paoli, L. and Schatzman, M., Penalty Approximation for Dynamical Systems Submitted to Multiple Non-Smooth Constraints, Multibody Syst. Dynam., 2002, vol. 8, pp. 347–366.

    MATH  MathSciNet  Google Scholar 

  165. Paoli, L. and Schatzman, M., Numerical Simulation of the Dynamics of an Impacting Bar, Comput. Methods Appl. Mech. Eng., 2007, vol. 196, pp. 2839–2851.

    MATH  MathSciNet  Google Scholar 

  166. Payr, M. and Glocker, Ch., Oblique Frictional Impact of a Bar: Analysis and Comparison of Different Impact Laws, Nonlin. Dynam., 2005, vol. 41, pp. 361–383.

    MATH  MathSciNet  Google Scholar 

  167. Percivale, D., Uniqueness in the Elastic Bounce Problem, J. Diff. Equat., 1985, vol. 56, pp. 206–215.

    MATH  MathSciNet  Google Scholar 

  168. Percivale, D., Uniqueness in the Elastic Bounce Problem. II, J. Diff. Equat., 1991, vol. 90, pp. 304–315.

    MATH  MathSciNet  Google Scholar 

  169. Schatzman, M., A Class of Nonlinear Differential Equations of Second Order in Time, Nonlinear Anal. TMA, 1978, vol. 2, pp. 355–373.

    MATH  MathSciNet  Google Scholar 

  170. Schatzman, M., Uniqueness and Continuous Dependence on Data for One-Dimensional Impact Problems, Math. Comput. Modelling, 1998, vol. 28, nos. 4–8, pp. 1–18.

    MATH  MathSciNet  Google Scholar 

  171. Schatzman, M., Penalty Method for Impact in Generalized Coordinates, Phil. Trans. R. Soc. London, A, 2001, vol. 359, pp. 2429–2446.

    MATH  MathSciNet  Google Scholar 

  172. Stewart, D.E., Convergence of a Time-Stepping Scheme for Rigid-Body Dynamics and Resolution of Painleve’s Problem, Arch. Rational Mech. Anal., 1998, vol. 145, pp. 215–260.

    MATH  Google Scholar 

  173. Stewart, D.E., Rigid-Body Dynamics with Friction and Impact, SIAM Rev., 2000, vol. 42, no. 1, pp. 3–39.

    MATH  MathSciNet  Google Scholar 

  174. Stewart, D.E., Reformulations of Measure Differential Inclusions and Their Closed Graph Property, J. Diff. Equat., 2001, vol. 175, pp. 108–129.

    MATH  Google Scholar 

  175. Stewart, D.E., Convolution Complementarity Problems with Application to Impact Problems, IMA J. Appl. Math., 2006, vol. 71, pp. 92–119.

    MATH  MathSciNet  Google Scholar 

  176. Pfeifer, F. and Glocker, C., Contacts in Systems of Rigid Bodies, Prikl. Mat. Mekh., 2000, vol. 64, no. 5, pp. 805–816.

    Google Scholar 

  177. Wösle, M. and Pfeifer, F., Dynamics of Spatial Structure-Varying Rigid Multibody Systems, Arch. Appl. Mechanics, 1999, vol. 69, pp. 265–285.

    MATH  Google Scholar 

  178. Yunt, K. and Glocker, C., Modeling and Optimal Control of Hybrid Rigidbody Mechanical Systems, in Proc. HSCC 2007, Bemporad, A., Bicchi, A., and Buttazzo, G., Eds., Berlin: Springer, 2007, pp. 614–627.

    Google Scholar 

  179. Yunt, K. and Glocker, C., A Combined Continuation and Penalty Method for the Determination of Optimal Hybrid Mechanical Trajectories, in Proc. IUTAM Symp. Dynamics and Control of Nonlinear Systems with Uncertainty, 2007, Hu, H.Y. and Kreuzer, E., Eds., Springer, pp. 187–196.

    Google Scholar 

  180. Kovalev, A.M., Kravchenko, N.V., and Nespirnyi, V.N., Problems of Control and Stabilization of Impulsive-control Dynamic Systems with Application to Nonholonomic Mechanics, Autom. Remote Control, 2007, vol. 68, no. 8, pp. 1444–1458.

    MATH  MathSciNet  Google Scholar 

  181. Popp, K., On Nonsmooth Systems in Mechanics, Prikl. Mat. Mekh., 2000, vol. 64, no. 5, pp. 795–804.

    MATH  Google Scholar 

  182. Samsonov, V.A., Dynamics of the Brake Shoe and “Friction-induced Impact,” Prikl. Mat. Mekh., 2005, vol. 69, no. 6, pp. 912–921.

    MATH  MathSciNet  Google Scholar 

  183. Kharlamov, P.V., Criticism of Some Mathematical Models of Mechanical Systems with Differential Relations, Prikl. Mat. Mekh., 1992, vol. 56, no. 4, pp. 683–692.

    MathSciNet  Google Scholar 

  184. Chang, Chau-Chin and Huston, R., Collision of Multiboby Systems, Comput. Mechanics, 2001, vol. 27, pp. 436–444.

    MATH  Google Scholar 

  185. Rubin, H. and Ungar, P., Motion under a Strong Constraining Force, Commun. Pure Applied Math., 1957, vol. 10, no. 1, pp. 67–87.

    MathSciNet  Google Scholar 

  186. Song, P., Kraus, P., Kumar, V., et al., Analysis of Rigid-Body Dynamic Models for Simulation of Systems with Frictional Contacts, Trans. ASME, 2001, vol. 68, pp. 118–128.

    MATH  Google Scholar 

  187. Yao Wen-li, Chen Bin, Liu Cai-shan, et al., Sliding State Stepping Algorithm for Solving Impact Problems of Multi-Rigid-Body System with Joint Friction, Appl. Math. Mechanics (English Edition), 2007, vol. 28(12), pp. 1621–1627.

    MATH  MathSciNet  Google Scholar 

  188. Zhao, Z., Chen, B., Liu, C., et al., Impact Model Resolution of Painleve Paradox, Acta Mechanica Sinica, 2004, vol. 20(6), pp. 649–660.

    MathSciNet  Google Scholar 

  189. Ivanov, A.P., Osnovy teorii sistem s treniem (Fundamentals of the Theory of Systems with Friction), Izhevsk: NITs “Regulyarnaya i Khaoticheskaya Dinamika,” 2011.

    Google Scholar 

  190. Filippov, A.F., Differentsial’nye uravneniya s razryvnoi pravoi chast’yu (Differential Equations with Discontinuous Right Side), Moscow: Nauka, 1985.

    Google Scholar 

  191. Gurman, V.I. and Dykhta, V.A., Singular Problems of Optimal Control and the Method of Multiple Maxima, Autom. Remote Control, 1977, vol. 38, no. 3, part 1, pp. 343–350.

    MATH  MathSciNet  Google Scholar 

  192. Andreeva, I.Yu. and Sesekin, A.N., Impulsive Linear-Quadratic Problem of Optimization in Systems with Aftereffect, Izv. Vyssh. Uchebn. Zaved., Mat., 1995, no. 10, pp. 10–14.

    Google Scholar 

  193. Andreeva, Yu. and Sesekin, A.N., Degenerate Linear Quadratic Optimization with Time Delay, Autom. Remote Control, 1997, vol. 58, no. 7, part 1, pp. 1101–1109.

    MATH  MathSciNet  Google Scholar 

  194. Miller, B.M. and Serebrovskii, A.P., Optimal Control of Linear System with Singular Quadratic Performance Criterion, Autom. Remote Control, 1979, vol. 40, no. 3, part 1, pp. 339–348.

    MATH  MathSciNet  Google Scholar 

  195. Sesekin, A.N. and Veshkurova, Ya.A., On Nonlinear Neutral Differential Equations with Impulsive Action, Izv. Inst. Mat. Informatiki, Udmurt. Gos. Univ., 2012, no. 1(39), pp. 24–25.

    Google Scholar 

  196. Chernous’ko, F.L., Optimal Rectilinear Motion of a Two-mass System, Prikl. Mat. Mekh., 2002, vol. 66, no. 1, pp. 3–9.

    MATH  MathSciNet  Google Scholar 

  197. Brogliato, B., Niculescu, S.I., and Orhant, P., On the Control of Finite-DimensionalMechanical Systems with Unilateral Constraint, IEEE Trans. Automat. Control, 1997, vol. 42, no. 2, pp. 200–215.

    MATH  MathSciNet  Google Scholar 

  198. Brogliato, B. and Zavala Rio, A., On the Control of Complementary-Slackness Juggling Mechanical Systems, IEEE Trans. Automat. Control, 2000, vol. 45, no. 2, pp. 235–246.

    MATH  MathSciNet  Google Scholar 

  199. Brogliato, B., Niculescu, S. and Monteiro-Marques, M., On Tracking Control of a Class of Complementary-Slackness Hybrid Mechanical Systems, Syst. Control Lett., 2000, vol. 39, pp. 255–266.

    MATH  MathSciNet  Google Scholar 

  200. Menini, L. and Tornambe, A., Control of (Otherwise) Uncontrollable Linear Mechanical Systems through Non-Smooth Impacts, Syst. Control Lett., 2003, vol. 49, pp. 311–322.

    MATH  MathSciNet  Google Scholar 

  201. Spong, M., Impact Controllability of an Air Hockey Puck, Syst. Control Lett., 2001, vol. 42, pp. 333–345.

    MATH  MathSciNet  Google Scholar 

  202. Tornambe, A., Modeling and Control of ImpactMechanical Systems: Theory and Experimental Results, IEEE Trans. Automat. Control, 1999, vol. 44, no. 2, pp. 294–309.

    MATH  MathSciNet  Google Scholar 

  203. Monteiro-Marques, M.D.P., Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction, Boston: Birkhauser, 1993.

    MATH  Google Scholar 

  204. Brogliato, B., Some Perspectives on the Analysis and Control of Complementary Systems, IEEE Trans. Automat. Control, 2003, vol. 48, no. 6, pp. 918–935.

    MathSciNet  Google Scholar 

  205. Aizerman, M.A., Klassicheskaya mekhanika (Classical Mechanics), Moscow: Nauka, 1980.

    Google Scholar 

  206. Lee, E.B. and Markus, L., Foundations of Optimal Control Theory, New York: Wiley, 1967. Translated under the title Osnovy teorii optimal’nogo upravleniya, Moscow: Nauka, 1972.

    MATH  Google Scholar 

  207. Génot, F. and Brogliato, B., New Results on Painlevé Paradoxes, INRIA Report, 1998, no. 3366.

    Google Scholar 

  208. Génot, F. and Brogliato, B., New Results on Painlevé Paradoxes, Eur. J. Mech. A/Solids, 1999, vol. 18, no. 18, pp. 653–678.

    MATH  MathSciNet  Google Scholar 

  209. Miller, B. and Bentsman, J., Generalized Solutions in Systems with Active Unilateral Constraints, Nonlinear Analysis: Hybrid Systems, 2007, vol. 1, pp. 510–526.

    MATH  MathSciNet  Google Scholar 

  210. Schatzman, M., Penalty Approximation of Painlevé Problem, Nonsmooth Mechanics Anal., Ser.: Adv. Mech. Math., 2006, vol. 12, New York: Springer, pp. 129–143.

    MathSciNet  Google Scholar 

  211. Bornemann, F., Homogenization in Time of Singularly Perturbed Mechanical Systems (Lecture Notes in Mathematics), Berlin: Springer, 1998, vol. 1687.

    Google Scholar 

  212. Jean, M. and Moreau, J.J., Dynamics of Elastic or Rigid Bodies with Frictional Contact: Numerical Methods, Marseille: Publications Lab. Mechanics Acoustics, April 1991, no. 124.

    Google Scholar 

  213. Moreau, J.J., Bounded Variation in Time, in Topics in Nonsmooth Mechanics, 1988, Moreau, J.J., Panagiotopolous, P.D., and Strang, G., Eds., Basel: Birkhauser, pp. 1–74.

    Google Scholar 

  214. Moreau, J.J., Unilateral Contacts and Dry Friction in Finite Freedom Dynamics, in Nonsmooth Mechanics and Applications, CIMS Course and Lectures, Wien: Springer, 1988, vol. 302, pp. 1–82.

    Google Scholar 

  215. Brendelev, V.N., On Realization of Constraints in Nonholonomic Mechanics, Prikl. Mat. Mekh., 1981, vol. 45, no. 3, pp. 481–487.

    MathSciNet  Google Scholar 

  216. Zhuravlev, V.F., Motion Equations in Mechanical Systems with Ideal Unidirectional Relations, Prikl. Mat. Mekh., 1978, vol. 42, no. 5, pp. 781–788.

    MathSciNet  Google Scholar 

  217. Kozlov, V.V. and Neishtadt, A.I., On Realization of Holonomic Constraints, Prikl. Mat. Mekh., 1990, vol. 54, no. 5, pp. 858–861.

    MathSciNet  Google Scholar 

  218. Laksmikantham, V., Bainov, D.D., and Simeonov, P.S., Theory of Impulsive Differential Equations, Singapore: World Scientific, 1989.

    Google Scholar 

  219. Van der Schaft, A. and Schumacher, J.M., Complementary Modeling of Hybrid Systems, in Hybrid System (special issue), IEEE Trans. Automat. Control, 1998, vol. 43(4), pp. 483–490.

    MATH  Google Scholar 

  220. Van der Schaft, A. and Schumacher, J.M., Modelling and Analysis of Hybrid Dynamical Systems, in Advances in the Control of Nonlinear Systems, 2000, Lecture Notes in Control and Inform. Sci., London: Murcia-Springer, 2001, vol. 264, pp. 195–224.

    Google Scholar 

  221. Schumacher, J., Complementary Systems in Optimization, Math. Program., B, 2004, vol. 101(1), pp. 263–295.

    MATH  MathSciNet  Google Scholar 

  222. Heemels, W.P.M.H., Schumacher, J.M., and Weiland, S., Linear Complementary Systems, SIAM J. Appl. Math., 2000, vol. 60, no. 4, pp. 1234–1269.

    MATH  MathSciNet  Google Scholar 

  223. Brogliato, B., Lozano, R., Maschke, B., et al., Dissipative Systems. Analysis and Control Theory and Applications, London: Springer, 2007.

    MATH  Google Scholar 

  224. Zavala-Rio, A. and Brogliato, B., Direct Adaptive Control Design for One-Degree-of-Freedom Complementary-Slackness Jugglers, Automatica, IFAC, 2001, vol. 37, pp. 1117–1123.

    MATH  Google Scholar 

  225. Zhang, J., Johansson, K., Ligeros, J., et al., Zeno Hybrid Systems. Hybrid Systems in Control, Int. J. Robust Nonlinear Control, 2001, vol. 11(5), pp. 435–451.

    MATH  Google Scholar 

  226. Bentsman, J. and Miller, B., Dynamical Systems with Active Singularities of Elastic Type: A Modeling and Controller Synthesis Framework, IEEE Trans. AC, 2007, vol. 51, pp. 39–55.

    MathSciNet  Google Scholar 

  227. Miller, B. and Bentsman, J., Optimal Control Problems in Hybrid Systems with Active Singularities, Nonlinear Anal., 2006, vol. 65, pp. 999–1017.

    MATH  MathSciNet  Google Scholar 

  228. Bentsman, J., Miller, B., and Rubinovich, E., Dynamical Systems with Active Singularities: Input/State/Output Modeling and Control, Automatica, IFAC, 2008, vol. 44, pp. 1141–1152.

    MathSciNet  Google Scholar 

  229. Bentsman, J., Miller, B., Rubinovich, E., et al., Output Modeling and Control of Dynamical Systems with Active Singularities: Single- and Multi-Impact Sequences, IEEE Trans. AC, 2012, vol. 56, pp. 1854–1859.

    MathSciNet  Google Scholar 

  230. Darboux, G., Etude geometrique sur les percussions et le choc des corps, in Despeyrous, Th., Cours de mecanique (avec des notes M.G. Darboux), Paris: Hermann, Librairie Scientifique, 1984, vol. 2.

    Google Scholar 

  231. Miller, B.M., Rubinovich, E.Ya., and Bentsman, J., Spatiotemporal Singular Transformation in Dynamical Systems with Impacts and Its Use in Obtaining Generalized Solution of Painlevé Problem, Proc. 18th IFAC World Congr., Milano, August 28–September 2, 2011, pp. 3463–3473.

  232. Stainovic, D. and Hurmuzglu, Y., A Critical Study of the Applicability of Rigid-Body Collision Theory, Trans. ASME, J. Appled Mechanics, 1996, vol. 63, pp. 307–316.

    Google Scholar 

  233. Stronge, W.J., Rigid Body Collisions with Friction, Proc. Roy. Soc. London, 1990, Ser. A, vol. 431, pp. 168–181.

    MathSciNet  Google Scholar 

  234. Galyaev, A.A., Optimal Pulse Control of Dynamic Systems in the Shock Phase, Autom. Remote Control, 2006, vol. 67, no. 1, pp. 65–77.

    MATH  MathSciNet  Google Scholar 

  235. Galyaev, A.A., Impact of a System of Material Points Against an Absolutely Rigid Obstacle: A Model for Its Impulsive Action, Autom. Remote Control, 2006, vol. 67, no. 6, pp. 856–867.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.M. Miller, E.Ya. Rubinovich, 2013, published in Avtomatika i Telemekhanika, 2013, No. 12, pp. 56–103.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, B.M., Rubinovich, E.Y. Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations. Autom Remote Control 74, 1969–2006 (2013). https://doi.org/10.1134/S0005117913120047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117913120047

Keywords

Navigation