Skip to main content
Log in

Sufficient optimality conditions in hierarchical models of nonuniform systems

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We give a brief survey of the studies developed on the basis of general Krotov’s sufficient optimality conditions in an important research direction related to nonuniform systems. We construct a two-layered model of the network structure. The upper level of this model is an abstract network of operators; the lower level contains continuous dynamical models. For such a network, we pose an optimization problem and find general sufficient optimality conditions as generalizations of sufficient conditions for discrete-continuous dynamical systems. We survey possible applications of this direction and consider an example of optimizing nature preservation activities in a river basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teoriya sistem s peremennoi strukturoi (Theory of Systems with Variable Structure), Emel’yanov, S.V., Ed., Moscow: Nauka, 1970.

    Google Scholar 

  2. Tsypkin, Ya.Z. and Popkov, B.S., Teoriya nelineinykh impul’snykh sistem (Theory of Nonlinear Impulse Systems), Moscow: Nauka, 1973.

    Google Scholar 

  3. Gurman, V.I., Theory of Optimum Discrete Processes, Autom. Remote Control, 1973, vol. 34, no. 7, part 1, pp. 1082–1087.

    MATH  MathSciNet  Google Scholar 

  4. Gabelko, K.N., Gradual Improvement of Multistage Processes, Autom. Remote Control, 1974, vol. 35, no. 12, part 1, pp. 1937–1946.

    Google Scholar 

  5. Orlov, A.G. and Rasina, I.V., Complex Processes and Sufficient Conditions of Relative Optimality, Upravl. Sist., 1979, no. 18, pp. 39–46.

    Google Scholar 

  6. Bortakovskii, A.S. and Panteleev, A.V., Sufficient Conditions of Optimal Control of Continuous-Discrete Systems, Autom. Remote Control, 1987, vol. 48, no. 7, part 1, pp. 880–887.

    MathSciNet  Google Scholar 

  7. Branicky, M., Borkar, V., and Mitter, S., A Unified Framework for Hybrid Control: Model and Optimal Control Theory, IEEE TAC, 1998, vol. 43, pp. 31–45.

    MATH  MathSciNet  Google Scholar 

  8. Aubin, J.-P., Impulse Differential Equations and Hybrid Systems: A Viability Approach, Lecture Notes, Berkeley: Univ. of California at Berkeley, 1999.

    Google Scholar 

  9. Vassilyev, S.N., Homomorphisms of Impulsive Differential Equations with Impulses at Unfixed Times and Comparison Method, Int. J. Hybrid Syst., 2002, vol. 2, no. 3, pp. 289–296.

    Google Scholar 

  10. Cardoso, R.T.N. and Takahashi, R.H.C., Solving Impulsive Control Problems by Discrete-time Dynamic Optimization Methods, TEMA Tend. Mat. Apl. Comput., 2008, vol. 9, no. 1, pp. 21–30.

    MATH  MathSciNet  Google Scholar 

  11. Lygeros, J., Quincampoix, M., and Rzezuchowski, T., Impulse Differential Inclusions Driven by Discrete Measures, Lect. Notes Comput. Sci., 2007, vol. 4416, pp. 385–398.

    Article  MathSciNet  Google Scholar 

  12. Kurzhanskii, A.B. and Tochilin, P.A., Impulse Controls in Models of Hybrid Systems, Differ. Uravn., 2009, vol. 45, no. 5, pp. 716–727.

    MathSciNet  Google Scholar 

  13. Vassilyev, S.N. and Malikov, A.I., On Some Results on Stability of Switching Hybrid Systems, in Aktual’nye problemy mekhaniki sploshnoi sredy. K 20-letiyu Inst. Mekh. Mashinostroeniya Kaz. Nauchn. Tsentr Ross. Akad. Nauk (Modern Problems of Continuum Mechanics. To the 20th Anniversary of Inst. of Mechanics and Engineering, Kazan Science Center, Russian Academy of Sciences), Kazan: Foliant, 2011, vol. 1, pp. 23–81.

    Google Scholar 

  14. Krotov, V.F., Methods for the Solution of Variational Problems Using Sufficient Conditions for an Absolute Minimum. I–III, Autom. Remote Control, 1962, vol. 23, no. 12, pp. 1473–1484; 1963, vol. 24, no. 5, pp. 539–553; 1964, vol. 25, no. 7, pp. 924–933.

    MathSciNet  Google Scholar 

  15. Krotov, V.F., Sufficient Optimality Conditions for Discrete Controllable Systems, Dokl. Akad. Nauk SSSR, 1967, vol. 172, no. 1, pp. 18–21.

    MathSciNet  Google Scholar 

  16. Krotov, V.F. and Gurman, V.I., Metody i zadachi optimal’nogo upravleniya (Methods and Problems of Optimal Control), Moscow: Nauka, 1973.

    Google Scholar 

  17. Gurman, V.I., Vyrozhdennye zadachi optimal’nogo upravleniya (Degenerate Optimal Control Problems), Moscow: Nauka, 1977.

    MATH  Google Scholar 

  18. Krotov, V.F., Global Methods in Optimal Control Theory, New York: Marcel Dekker, 1996.

    MATH  Google Scholar 

  19. Gurman, V.I., Printsip rasshireniya v zadachakh upravleniya (The Extension Principle in Control Problems), Moscow: Nauka, 1997.

    MATH  Google Scholar 

  20. Baturin, V.A. and Urbanovich, D.E., Priblizhennye metody optimal’nogo upravleniya, osnovannye na printsipe rasshireniya (Approximate Optimal Control Methods Based on the Extension Principle), Novosibirsk: Nauka, 1997.

    Google Scholar 

  21. Krasnov, I.V., Shaparev, N.Ya., and Shkedov, I.M., Optimal’nye lazernye vozdeistviya (Optimal Lazer Influences), Novosibirsk: Nauka, 1989.

    Google Scholar 

  22. Dykhta, V.A. and Samsonyuk, O.N., Optimal’noe impul’snoe upravlenie s prilozheniyami (Optimal Impulse Control with Applications), Moscow: Fizmatlit, 2000.

    MATH  Google Scholar 

  23. Salmin, V.V., Ishkov, S.A., and Starinova, O.L., Metody resheniya variatsionnykh zadach mekhaniki kosmicheskogo poleta s maloi tyagoi (Methods for Solving Variational Problems in the Space Flight Mechanics with Small Thrust), Samara: Samar. Nauchn. Tsentr Ross. Akad. Nauk, 2006.

    Google Scholar 

  24. Matrosov, V.M., The Comparison Method in System Dynamics. I, II, Differ. Uravn., 1974, vol. 10, no. 5, pp. 1547–1559; 1975, vol. 11, no. 3, pp. 403–417.

    MATH  MathSciNet  Google Scholar 

  25. Gurman, V.I., Dykhta, V.A., Kolokol’nikova, G.A., et al., The Extension Principle in Optimal Control Problems, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1983, no. 2, pp. 200–217.

    Google Scholar 

  26. Moskalenko, A.I., Sufficient Conditions of Joint Optimality of Systems, Dokl. Akad. Nauk SSSR, 1977, vol. 232, no. 3, pp. 524–527.

    MathSciNet  Google Scholar 

  27. Moskalenko, A.I., Metody nelineinykh otobrazhenii v optimal’nom upravlenii (Method of Nonlinear Mappings in Optimal Control), Novosibirsk: Nauka, 1983.

    Google Scholar 

  28. Rasina, I.V. and Blinov, A.O., Improvement of Impulse Processes Based on a Discrete-Continuous Model, Vestn. Buryat. Gos. Univ., Mat. Informatika, 2012, no. 1, pp. 42–52.

    Google Scholar 

  29. Gurman, V.I. and Rasina, I.V., Discrete-Continuous Representations of Impulsive Processes in the Controllable Systems, Autom. Remote Control, 2012, vol. 73, no. 8, pp. 1290–1300.

    Article  MATH  Google Scholar 

  30. Rasina, I.V., Iterative Optimization Algorithms for Discrete-Continuous Processes, Autom. Remote Control, 2012, vol. 73, no. 10, pp. 1591–1603.

    Article  MATH  Google Scholar 

  31. Rasina, I.V., Discrete-Continuous Models and Optimization of Controllable Processes, Program. Sist.: Teor. Prilozheniya., Electronic Journal of Ailamazyan Program Syst. Inst. RAS, 2011, no. 5(9), pp. 49–72.

    Google Scholar 

  32. Rasina, I.V. and Baturina, O.V., Optimization of State-Linear Discrete-Continuous Systems, Autom. Remote Control, 2013, vol. 74, no. 4, pp. 604–612.

    Article  MATH  Google Scholar 

  33. Rasina, I.V., Degenerate Problems of Optimal Control for Discrete-Continuous (Hybrid) Systems, Autom. Remote Control, 2013, vol. 74, no. 2, pp. 196–206.

    Article  MATH  Google Scholar 

  34. Rasina, I.V. and Baturina, O.V., Control Optimization in Bilinear Systems, Autom. Remote Control, 2013, vol. 74, no. 5, pp. 802–810.

    Article  MATH  Google Scholar 

  35. Gurman, V.I., Abstract Optimization Problems and Improvements, Program. Sist.: Teor. Prilozhen., Electronic Journal of Ailamazyan Program Syst. Inst. RAS, 2011, no. 5(9), pp. 21–29.

    Google Scholar 

  36. Gurman, V.I. Optimizatsiya diskretnykh sistem (Optimization of Discrete Systems), Irkutsk: Irkutsk. Gos. Univ., 1976.

    Google Scholar 

  37. Konstantinov, G.N., Normirovanie vozdeistvii na dinamicheskie sistemy (Normalizing Influences on Dynamical Systems), Irkutsk: Ikrutsk. Gos. Univ., 1983.

    Google Scholar 

  38. Anokhin, A.B., Gurman, V.I., Konstantinov, G.N., et al., Matematicheskie modeli i metody upravleniya krupnomasshtabnym vodnym ob”ektom (Mathematical Models and Control Methods for a Large-Scale Aquatic Object), Novosibirsk: Nauka, 1987.

    Google Scholar 

  39. Rasina, I.V., Slozhnye diskretnye protsessy, Metody optimizatsii i issledovanie operatsii (prikladnaya matematika) (Complex Discrete Processes, Optimization Methods and Operations Research (Applied Mathematics)), Irkutsk: Sib. Energ. Inst., Sib. Otd. Akad. Nauk SSSR, 1976, pp. 64–70.

    Google Scholar 

  40. Gurman, V.I., Trushkova, E.A., Rasina, I.V., et al., A Hierarchical Model for a Nonuniform Discrete System and Its Applications, Upravlen. Bol’shimi Sist., 2013, no. 41, pp. 249–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Gurman, I.V. Rasina, 2013, published in Avtomatika i Telemekhanika, 2013, No. 12, pp. 15–30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurman, V.I., Rasina, I.V. Sufficient optimality conditions in hierarchical models of nonuniform systems. Autom Remote Control 74, 1935–1947 (2013). https://doi.org/10.1134/S0005117913120023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117913120023

Keywords

Navigation