Skip to main content
Log in

Lipschitz global optimization methods in control problems

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Many control problems involve the search for the global extremum in the space of states or the parameters of the system under study, which leads to the necessity of using effective methods of global finite-dimensional optimization. For this purpose use can be made of the geometric algorithms of Lipschitz global optimization, which are developed by the authors. A brief review of these algorithms is presented and they are compared with some algorithms of global search that are often used in technical practice. Numerical experiments are performed on a few known examples of applied multiextremal problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balandin, D.V. and Kogan, M.M., Sintez zakonov upravleniya na osnove lineinykh matrichnykh neravenstv (Synthesis of Control Laws on the Basis of Linear Matrix Inequalities), Moscow: Fizmatlit, 2007.

    Google Scholar 

  2. Neimark, Yu.I., Dinamicheskie sistemy i upravlyaemye protsessy (Dynamic Systems and Controllable Processes), Moscow: Nauka, 1978.

    Google Scholar 

  3. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  4. Ackermann, J., Robust Control: The Parameter Space Approach, London: Springer-Verlag, 2002, 2nd ed.

    Book  Google Scholar 

  5. Krotov, V.F., Global Methods in Optimal Control Theory, New York: Marcel Dekker, 1996.

    MATH  Google Scholar 

  6. Gurman, V.I., Printsip rasshireniya v zadachakh upravleniya (The Principle of Extension in Control Problems), Moscow: Nauka, 1997, 2nd ed.

    MATH  Google Scholar 

  7. Evtushenko, Yu.G., Metody resheniya ekstremal’nylh zadach i ikh primenenie v sistemakh optimizatsii (Methods of Solution of Extremal Problems and Their Application in Optimization Systems), Moscow: Nauka, 1982.

    Google Scholar 

  8. Metody klassicheskoi i sovremennoi teorii upravleniya (Methods of Classical and Modern Theory of Control. Manual in 5 volumes), Pupkov, K.A. and Egupov, N.D., Eds., Moscow: Mosk. Gos. Tekh. Univ., 2004.

    Google Scholar 

  9. Batishchev, D.I., Metody optimal’nogo proektirovaniya (Methods of Optimal Design), Moscow: Radio i Svyaz’, 1984.

    Google Scholar 

  10. Gorodetskii, S.Yu. and Grishagin, V.A., Nelineinoe programmirovanie i mnogoekstremal’naya optimizatsiya (Nonlinear Programming and Multiextremal Optimization), Nizhni Novgorod: NNGU, 2007.

    Google Scholar 

  11. Zhiglyavskii, A.A. and Zhilinskas, A.G., Metody poiska global’nogo ekstremuma (Methods of Global Extremum Search), Moscow: Nauka, 1991.

    Google Scholar 

  12. Sergeyev, Ya.D. and Kvasov, D.E., Diagonal’nye metody global’noi optimizatsii (Diagonal Methods of Global Optimization), Moscow: Fizmatlit, 2008.

    Google Scholar 

  13. Strongin, R.G., Gergel’, V.P., Gorodetskii, S.Yu., et al., Sovremennye metody prinyatiya optimal’nykh reshenii (Modern Methods of Optimal Decision Making), Nizhni Novgorod: NNGU, 2002.

    Google Scholar 

  14. Strekalovskii, A.S., Elementy nevypukloi optimizatsii (Elements of Nonconvex Optimization), Novosibirsk: Nauka, 2003.

    Google Scholar 

  15. Strongin, R.G., Chislennye metody v mnogoekstremal’nykh zadachakh. Informatsionno-statisticheskii podkhod (Numerical Methods in Multiextremal Problems. Information-Statistical Approach), Moscow: Nauka, 1978.

    Google Scholar 

  16. Wilde, D.J., Globally Optimal Design, New York: Wiley, 1978. Translated under the title Optimal’noe proektirovanie, Moscow: Mir, 1981.

    Google Scholar 

  17. Strongin, R.G. and Sergeyev, Ya.D., Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms, Dordrecht: Kluwer, 2000.

    Book  Google Scholar 

  18. Balakrishnan, V. and Boyd, S., Global Optimization in Control System Analysis and Design, in Control and Dynamic Systems: Advances in Theory and Applications, Leondes, S.T., Ed., New York: Academic, 1992, vol. 53, part 1, pp. 1–56.

    Google Scholar 

  19. Famularo, D., Pugliese, P., and Sergeyev, Ya.D., A Global Optimization Technique for Checking Parametric Robustness, Automatica, 1999, vol. 35, no. 9, pp. 1605–1611.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kvasov, D.E., Menniti, D., Pinnarelli, A., et al., Tuning Fuzzy Power-System Stabilizers in Multi-Machine Systems by Global Optimization Algorithms Based on Efficient Domain Partitions, Electr. Power Syst. Res., 2008, vol. 78, no. 7, pp. 1217–1229.

    Article  Google Scholar 

  21. Carotenuto, L., Pugliese, P., and Sergeyev, Ya.D., Maximizing Performance and Robustness of PI and PID Controllers by Global Optimization, Control Intell. Syst., 2006, vol. 34, no. 3, pp. 225–235.

    Google Scholar 

  22. Neimark, Yu.I., Robust Stability and D-partitioning, Autom. Remote Control, 1992, vol. 53, no. 7, pp. 957–965.

    MathSciNet  Google Scholar 

  23. De Gaston, R.R.E. and Safonov, M.G., Exact Calculation of the Multiloop Stability Margin, IEEE Trans. Automat. Control, 1988, vol. 33, no. 2, pp 156–171.

    Article  MATH  Google Scholar 

  24. Sergeyev, Ya.D., Daponte, P., Grimaldi, D., and Molinaro, A., Two Methods for Solving Optimization Problems Arising in Electronic Measurements and Electrical Engineering, SIAM J. Optim., 1999, vol. 10, no. 1, pp. 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  25. Gornov, A.Yu., Zarodnyuk, T.S., Madzhara, T.I., et al., A Collection of Test Multiextremal Optimal Control Problems, in Optimization, Simulation, and Control, Chinchuluun, A., et al., Eds., New York: Springer, 2013, Springer Optimization and Its Applications, vol. 76, pp. 257–274.

    Google Scholar 

  26. Handbook of Global Optimization, Horst, R. and Pardalos, P.M., Eds., Dordrecht: Kluwer, 1995, vol. 1.

    MATH  Google Scholar 

  27. Pintér, J.D., Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications), Dordrecht: Kluwer, 1996.

    Book  Google Scholar 

  28. Kvasov, D.E. and Sergeyev, Ya.D., Univariate Geometric Lipschitz Global Optimization Algorithms, Numer. Algebra Control Optim., 2012, vol. 2, no. 1, pp. 69–90.

    Article  MathSciNet  MATH  Google Scholar 

  29. Sergeyev, Ya.D., A One-dimensional Determinate Algorithm of Global Minimization, Zh. Vychisl. Mat. Mat. Fiz., 1995, vol. 35, no. 5, pp. 705–717.

    MathSciNet  Google Scholar 

  30. Jones, D.R., Perttunen, C.D., and Stuckman, B.E., Lipschitzian Optimization without the Lipschitz Constant, J. Optim. Theory Appl., 1993, vol. 79, no. 1, pp. 157–181.

    Article  MathSciNet  MATH  Google Scholar 

  31. Sergeyev, Ya.D. and Kvasov, D.E., Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants, SIAM J. Optim., 2006, vol. 16, no. 3, pp. 910–937.

    Article  MathSciNet  MATH  Google Scholar 

  32. Evtushenko, Yu.G. and Posypkin, M.A., Application of the Method of Nonuniform Coverings for Global Optimization of Partially Integral Nonlinear Problems, Zh. Vychisl. Mat. Mat. Fiz., 2011, vol. 51, no. 8, pp. 1376–1389.

    MathSciNet  MATH  Google Scholar 

  33. Sergeyev, Ya.D., Strongin, R.G., and Lera, D., Introduction to Global Optimization Exploiting Space-Filling Curves, New York: Springer, 2013.

    Book  MATH  Google Scholar 

  34. Sergeyev, Ya.D., An Efficient Strategy for Adaptive Partition of N-dimensional Intervals in the Framework of Diagonal Algorithms, J. Optim. Theory Appl., 2000, vol. 107, no. 1, pp. 145–168.

    Article  MathSciNet  MATH  Google Scholar 

  35. Kvasov, D.E. and Sergeyev, Ya.D., The Multidimensional Algorithm of Global Optimization on the Basis of Adaptive Diagonal Curves, Zh. Vychisl. Mat. Mat. Fiz., 2003, vol. 43, no. 1, pp. 42–59.

    MathSciNet  Google Scholar 

  36. Grishagin, V.A., Operational Characteristics of Some Algorithms of Global Search, in Problemy sluchainogo poiska. Zadachi adaptatsii v tekhnicheskikh sistemakh (Problems of Random Search. Adaptation Problems in Technical Systems), Riga: Zinatne, 1978, pp. 198–206.

    Google Scholar 

  37. Kvasov, D.E. and Sergeyev, Ya.D., Lipschitz Gradients for Global Optimization in a One-Point-Based Partitioning Scheme, J. Comput. Appl. Math., 2012, vol. 236, no. 16, pp. 4042–4054.

    Article  MathSciNet  MATH  Google Scholar 

  38. Gablonsky, J.M. and Kelley, C.T., A Locally-Biased Form of the DIRECT Algorithm, J. Global Optim., 2001, vol. 21, no. 1, pp. 27–37.

    Article  MathSciNet  MATH  Google Scholar 

  39. Gaviano, M., Kvasov, D.E., Lera, D., and Sergeyev, Ya.D., Algorithm 829: Software for Generation of Classes of Test Functions with Known Local and Global Minima for Global Optimization, ACM Trans. Math. Softw., 2003, vol. 29, no. 4, pp. 469–480.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.E. Kvasov, Ya.D. Sergeyev, 2013, published in Avtomatika i Telemekhanika, 2013, No. 9, pp. 3–19.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kvasov, D.E., Sergeyev, Y.D. Lipschitz global optimization methods in control problems. Autom Remote Control 74, 1435–1448 (2013). https://doi.org/10.1134/S0005117913090014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117913090014

Keywords

Navigation