Skip to main content
Log in

Dietary restriction and lifespan: Control and modeling

  • Control Sciences
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Effect of dietary restriction on extended lifespan for various living organisms is examined. The fact that lifespan increases with moderate dietary restriction and the increase is determined by diet components, not the calorie content is noted. The following hypothesis is considered: change in the lifespan under dietary restriction is related to transition of the organism to the nonsteady state when control processes become activated for recovery to the stationary state. The energy expenditures for reproduction decreases, metabolism alteration sets in, and the substrate yield goes up. The extended life span observable in a number of cases may be a collateral result of these processes. Simulated results that confirm these inferences have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anisimov, V.N., Priority Areas of Fundamental Research in Gerontology: Russia’s contribution, Usp. Gerontol., 2003, vol. 12, pp. 9–27.

    Google Scholar 

  2. Novoseltsev, V.N., Teoriya upravleniya i biosistemy. Analiz sokhranitel’nykh svoistv (Control Theory and Biosystems. Analysis of Protective Properties), Moscow: Nauka, 1978.

    Google Scholar 

  3. Novoseltsev, V.N., Population Risk Analysis Based on Physiology Models, Sb. Tr. Inst. Probl. Upravlen., 1996, no. 3, pp. 63–77.

    Google Scholar 

  4. Novoseltsev, V.N., Arking, R., Novoseltseva, Zh.A., and Yashin, A.I., Interdisciplinary Modeling of Systemic Mechanisms for Reproduction and Aging Control, Probl. Upravlen., 2004, no. 4, pp. 27–40.

    Google Scholar 

  5. Novoseltsev, V.N. and Novoseltseva, Zh.A., Dietary Restriction Extends Lifespan in Sterile and Non-Sterile Female D. melanogaster. System-Defined Analysis, Usp. Gerontol., 2010, vol. 23, no. 2, pp. 185–196.

    Google Scholar 

  6. Novoseltsev, V.N., Uvelichenie prodolzhitel’nosti zhizni i usloviya sredy: matematicheskoe modelirovanie. Issledovatel’skii proekt (Extended Lifespan and Environmental Conditions: Mathematical Modeling. Research Project), Moscow: Fond “Nauka za Prodlenie Zhizni,” 2010.

    Google Scholar 

  7. Ugolev, A.M., Estestvennye tekhnologii biologicheskikh sistem (Natural Technologies of Biological Systems), Leningrad: Nauka, 1987.

    Google Scholar 

  8. Broughton, S. and Partridge, L., Insulin/IGF-like Signalling, the Central Nervous System and Aging, Biochem. J., 2009, vol. 418, pp. 1–12.

    Article  Google Scholar 

  9. Chapman, T. and Partridge, L., Female Fitness in Drosophila Melanogaster: An Interaction between the Effect of Nutrition and Encounter Rate with Males, Proc. Roy. Soc. Lond., 1996, vol. 263, pp. 755–759.

    Article  Google Scholar 

  10. Carey, J.R., Private message.

  11. Cheng, Ch.-L., Gao, T.-Q., Wang, Z., and Li, D.-D., Role of Insulin/Insulin-like Growth Factor 1 Signaling Pathway in Longevity, World J. Gastroenterol., vol. 11, pp. 1891–1895.

  12. Chippindale, A.K., Leroi, A.M., Kim, S.B., and Rose, M.R., Phenotypic Plasticity and Selection in Drosophila Life-History Evolution. I. Nutrition and the Cost of Reproduction, J. Evol. Biol., 1993, vol. 6, pp. 171–193.

    Article  Google Scholar 

  13. Davies, S., Kattel R., et al., The Effect of Diet, Sex, and Mating Status on Longevity in Mediterranean fruit flies (Ceratitis Capitata), Di ptera. Tephritidae, Exp. Gerontol., 1996, vol. 40, pp. 784–792.

    Article  Google Scholar 

  14. Good, T.P. and Tatar, M., Age-Specific Mortality and Reproduction Respond to Adult Dietary Restriction in Drosophila melanogaster, J. Insect. Physiol., 2001, vol. 47, pp. 1467–1473.

    Article  Google Scholar 

  15. Guyton, A., Textbook on Medical Physiology, Philadelphia: W.B. Saunders, 1981, 6th ed.

    Google Scholar 

  16. Harman, D., Aging: A Theory Based on Free Radical and Radiation chemistry, J. Gerontol., 1956, vol. 11, pp. 298–300.

    Article  Google Scholar 

  17. Hwangbo, D.S., Gersham, B., Tu, M.-P., et al., Drosophila dFOXO Controls Lifespan and Regulates Insulin Signalling in Brain and Fat Body, Nature, 2004, vol. 429, pp. 562–566.

    Article  Google Scholar 

  18. Kapahi, P., Zid, B.M., Harper, T., et al., Regulation of Lifespan in Drosophila by Modulation of Genes in the TOR Signaling Pathway, Curr. Biol., 2004, vol. 14, pp. 885–890.

    Article  Google Scholar 

  19. Kirkwood, T.B.L. and Rose, M.R., Evolution of Senescence—Late Survival Sacrificed for Reproduction, Phil. Trans. R. Soc. Lond., 1991, vol. B332, pp. 15–24.

    Google Scholar 

  20. Le Bourg, E. and Minois, N., Failure to Confirm Increased Longevity in Drosophila melanogaster Submitted to a Food Restriction Procedure, J. Gerontol. A, Biol. Sci., 1996, vol. 6, pp. B280–B283.

    Article  Google Scholar 

  21. Le Bourg, E. and Medioni, J., Food Restriction and Longevity in Drosophila melanogaster, Age Nutr., 1991, vol. 2, pp. 90–94.

    Google Scholar 

  22. Lee, K.P., Simpson, S.J., Glissold, F.J., et al., Lifespan and Reproduction in Drosophila: New Insights from Nutritional Geometry, PNAS, 2008, vol. 105, pp. 2498–2503.

    Article  Google Scholar 

  23. Mair, W., Goymer, P., Pletcher, S.D., and Partridge, L., Demography of Dietary Restriction and Death in Drosophila, Science, 2003, vol. 301, pp. 1731–1733.

    Article  Google Scholar 

  24. Mair, W., Pi, per M.D.W., and Partridge, L., Calories Do Not Explain Extension of Life Span by Dietary Restriction in Drosophila, PloS Biol., 2005, vol. 3, pp. 1305–1311.

    Article  Google Scholar 

  25. Mair, W., Sgro, C.M., Johnson, A.P., et al., Lifespan Extension by Dietary Restriction in Female Drosophila melanogaster Is Not Caused by a Reduction in Vitellogenesis or Ovarian Activity, Exp. Gerontol., 2004, vol. 39, pp. 1011–1019.

    Article  Google Scholar 

  26. Novoseltsev, V.N., Carey, J., Liedo, P., et al., The Reversal of Aging in Virgin Female Fruit Flies: An Anticipation of Oxidative Damage Hypothesis, Exp. Gerontol., 2000, vol. 35, pp. 971–987.

    Article  Google Scholar 

  27. Novoseltsev, V.N., Novoseltseva, J.A., and Yashin, A.I., A Homeostatic Model of Oxidative Damage Explains Paradoxes Observed in Earlier Aging Experiments: A Fusion and Extension of Older Theories of Aging, Biogerontol., 2001, vol. 2, pp. 127–138.

    Article  Google Scholar 

  28. O’Brien, D.M., Min, K.-J., Larsen, T., and Tatar, M., Use of Stable Isotopes to Examine How Dietary Restriction Extend Drosophila Lifespan, Curr. Biol. Mag., 2006, vol. 18, pp. R155–156.

    Article  Google Scholar 

  29. Partridge, L., Gems, D., and Withers, D.J., Sex and Death: What Is the Connection?, Cell, 2005, vol. 120, pp. 461–472.

    Article  Google Scholar 

  30. Pletcher, S.D., Macdonald, S.J., Marguerie, R., et al., Genome-Wide Transcript Profiles in Aging and Calorically Restricted Drosophila, Curr. Biol., 2002, vol. 12, pp. 712–723.

    Article  Google Scholar 

  31. Scorupa, D.A., Dervisefendic, A., Zweiner, J., and Pletcher, S.D., Dietary Composition Specifies Consumption, Obesity, and Lifespan in Drosophila melanogaster, Houston: Aging Cell, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.N. Novoseltsev, Zh.A. Novoseltseva, 2011, published in Problemy Upravleniya, 2011, No. 2, pp. 60–68.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novoseltsev, V.N., Novoseltseva, Z.A. Dietary restriction and lifespan: Control and modeling. Autom Remote Control 74, 1412–1423 (2013). https://doi.org/10.1134/S0005117913080171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117913080171

Keywords

Navigation