Skip to main content
Log in

Fractional integro-differential calculus and its control-theoretical applications. II. Fractional dynamic systems: Modeling and hardware implementation

  • Reviews
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The review was devoted to describing the dynamics of various systems and control processes in terms of the fractional integro-differential calculus. Consideration was given to particular types of the fractional differential equations and models of the fractional dynamic systems. Qualitative dynamics and the issues of stability and controllability of such systems were discussed. The analog and digital implementations of the fractional operations with the use of electrical and optical circuits were presented, as well as the models and methods of hardware implementation of the fractional controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butkovskii, A.G., Postnov, S.S., and Postnova, E.A., Fractional Integro-Differential Calculus and Its Control-theoretical Applications. I. Mathematical Fundamentals and the Problem of Interpretation, Autom. Remote Control, 2013, vol. 74, no. 5, pp. 543–576.

    Article  Google Scholar 

  2. Varlamov, V., Riesz Potentials for Korteweg-de Vries Solutions and Sturm-Liouville Problems, Int. J. Differ. Equat., 2010, vol. 2010 (article ID 193893).

  3. Shateri, M. and Ganji, D.D., Solitary Wave Solutions for a Time-Fraction Generalized Hirota-Satsuma Coupled KdV Equation by a New Analytical Technique, Int. J. Differ. Equat., 2010, vol. 2010 (article ID 954674).

  4. Petras, I., Modeling and Numerical Analysis of Fractional-Order Bloch Equations, Comput. Math. Appl., 2011, vol. 61, pp. 341–356.

    Article  MathSciNet  MATH  Google Scholar 

  5. Naber, M., Linear Fractionally Damped Oscillator, Int. J. Differ. Equat., 2010, vol. 2010 (article ID 197020).

  6. Rand, R.H., Sah, S.M., and Suchorsky, M.K., Fractional Mathieu Equation, Commun. Nonlin. Sci. Numer. Simulat., 2010, vol. 15, pp. 3254–3262.

    Article  Google Scholar 

  7. Meilanov, R.P. and Yanpolov, M.S., Characteristics of the Phase Trajectory of the “Fractal Oscillator,” Pis’ma v ZhTF, 2002, vol. 28, no. 1, pp. 67–73.

    Google Scholar 

  8. Özalp, N. and Demirci, E., A Fractional Order SEIR Model with Vertical Transmission, Math. Comput. Modelling, 2011, vol. 54, nos. 1–2, pp. 1–6.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ahmed, E., El-Sayed, A.M.A., and El-Saka, H.A.A., Equilibrium Points, Stability and Numerical Solutions of Fractional-Order Predator-Prey and Rabies Models, J. Math. Anal. Appl., 2007, vol. 325, pp. 542–553.

    Article  MathSciNet  MATH  Google Scholar 

  10. Anastasio, T.J., The Fractional-Order Dynamics of Brainstem Vestibulo-Oculomotor Neurons, Biol. Cybernet., 1994, vol. 72, pp. 69–79.

    Article  Google Scholar 

  11. Machado, J.A.T., Costa, A.C., and Quelhas, M.D., Fractional Dynamics in DNA, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 2963–2969.

    Article  MATH  Google Scholar 

  12. Uchaikin, V.V., Metod drobnykh proizvodnykh (Method of Fractional Derivatives), Ul’yanovsk: Artishok, 2008.

    Google Scholar 

  13. Tarasov, V.E., Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka (Models of Theoretical Physics with Fractional-order Integro-Differentiation), Izhevsk: RKhD, 2011.

    Google Scholar 

  14. Tarasov, V.E., Fractional Dynamics, Berlin: Springer, 2010.

    Book  MATH  Google Scholar 

  15. Nakhushev, A.M., Drobnoe ischislenie i ego primenenie (Fractional Calculus and Its Application), Moscow: Fizmatlit, 2003.

    MATH  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.

    MATH  Google Scholar 

  17. Pskhu, A.V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka (Partial Derivative Equations of Fractional Order), Moscow: Nauka, 2005.

    MATH  Google Scholar 

  18. Caponetto, R., Dongola, G., Fortuna, L., and Petras, I., Fractional Order Systems. Modelling and Control Applications, Singapore: World Scientific, 2010.

    Google Scholar 

  19. Matouk, A.E., Stability Conditions, Hyperchaos and Control in a Novel Fractional Order Hyperchaotic System, Phys. Lett. A, 2009, vol. 373, pp. 2166–2173.

    Article  MATH  Google Scholar 

  20. Li, C. and Chen, G., Chaos in the Fractional Order Chen System and Its Control, Chaos, Solitons Fractals, 2004, vol. 22, pp. 549–554.

    Article  MATH  Google Scholar 

  21. Tavazoei, M.S. and Haeri, M., Chaos Generation via a Switching Fractional Multi-Model System, Nonlin. Anal.: Real World Appl., 2010, vol. 11, pp. 332–340.

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, X., Li, J., and Chen, G., Chaos in the Fractional Order Unified System and Its Synchronization, J. Franklin Inst., 2008, vol. 345, pp. 392–401.

    Article  MATH  Google Scholar 

  23. Shao, S., Controlling General Projective Synchronization of Fractional Order Rössler Systems, Chaos, Solitons Fractals, 2009, vol. 39, pp. 1572–1577.

    Article  MATH  Google Scholar 

  24. Tavazoei, M.S. and Haeri, M., Chaos Control via a Simple Fractional-Order Controller, Phys. Lett. A, 2008, vol. 372, pp. 798–807.

    Article  MATH  Google Scholar 

  25. Hosseinnia, S.H., Ghaderi, R., Ranjbar, A.N., Mahmoudiana, M., and Momani, S., Sliding Mode Synchronization of an Uncertain Fractional Order Chaotic System, Comput. Math. Appl., 2010, vol. 59, pp. 1637–1643.

    Article  MathSciNet  MATH  Google Scholar 

  26. Tavazoei, M.S. and Haeri, M., Synchronization of Chaotic Fractional-Order Systems via Active Sliding Mode Controller, Physica A, 2008, vol. 387, pp. 57–70.

    Article  MathSciNet  Google Scholar 

  27. Matouk, A.E., Chaos, Feedback Control and Synchronization of a Fractional-Order Modified Autonomous Van der Pol-Duffing Circuit, Commun. Nonlin. Sci. Numer. Simul., 2011, vol. 16, pp. 975–986.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kiani-B, A., Fallahi, K., Pariz, N., and Leung, H., A Chaotic Secure Communication Scheme Using Fractional Chaotic Systems Based on an Extended Fractional Kalman Filter, Commun. Nonlin. Sci. Numer. Simul., 2009, vol. 14, pp. 863–879.

    Article  MathSciNet  MATH  Google Scholar 

  29. Tavazoei, M.S. and Haeri, M., Limitations of Frequency Domain Approximation for Detecting Chaos in Fractional Order Systems, Nonlin. Anal., 2008, vol. 69, pp. 1299–1320.

    Article  MathSciNet  MATH  Google Scholar 

  30. Hartley, T.T. and Lorenzo, C.F., Dynamics and Control of Initialized Fractional-Order Systems, Nonlin. Dyn., 2002, vol. 29, nos. 1–4, pp. 201–233.

    Article  MathSciNet  MATH  Google Scholar 

  31. Edelman, M. and Tarasov, V.E., Fractional Standard Map, Phys. Lett. A, 2009, vol. 374, pp. 279–285.

    Article  MathSciNet  MATH  Google Scholar 

  32. Mansouri, R., Bettayeb, M., and Djennoune, S., Comparison Between Two Approximation Methods of State Space Fractional Systems, Signal Proc., 2009, vol. 91, pp. 461–469.

    Google Scholar 

  33. Mansouri, R., Bettayeb, M., and Djennoune, S., Multivariable Fractional System Approximation with Initial Conditions Using Integral State Space Representation, Comput. Math. Appl., 2010, vol. 59, pp. 1842–1851.

    Article  MathSciNet  MATH  Google Scholar 

  34. Mozyrska, D. and Torres, D.F.M., Modified Optimal Energy and Initial Memory of Fractional Continuous-Time Linear Systems, Signal Proc., 2011, vol. 91, pp. 379–385.

    Article  MATH  Google Scholar 

  35. Tavazoei, M.S. and Haeri, M., Rational Approximations in the Simulation and Implementation of Fractional-Order Dynamics: A Descriptor System Approach, Automatica, 2010, vol. 46, pp. 94–100.

    Article  MathSciNet  MATH  Google Scholar 

  36. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., et al., Fractional-Order Systems and Controls: Fundamentals and Applications, London: Springer, 2010.

    Book  MATH  Google Scholar 

  37. Das, S., Functional Fractional Calculus for System Identification and Controls, Berlin: Springer, 2008.

    MATH  Google Scholar 

  38. Lakshmikantham, V., Leela, S., and Vasundhara, D.J., Theory of Fractional Dynamic Systems, Cambridge: Cambridge Scientific Publishers, 2009.

    MATH  Google Scholar 

  39. Aoun, M., Malti, R., Levron, F., and Oustaloup, A., Numerical Simulations of Fractional Systems: An Overview of Existing Methods and Improvements, Nonlin. Dyn., 2004, vol. 38, pp. 117–131.

    Article  MATH  Google Scholar 

  40. Li, C., Chen, A., and Ye, J., Numerical Approaches to Fractional Calculus and Fractional Ordinary Differential Equations, J. Comp. Phys., 2011, vol. 230, no. 9, pp. 3352–3368.

    Article  MathSciNet  MATH  Google Scholar 

  41. Pederson, S. and Sambandham, M., Numerical Solution of Hybrid Fractional Differential Equations, Commun. Appl. Anal., 2008, vol. 12, no. 4, pp. 429–440.

    MathSciNet  MATH  Google Scholar 

  42. Advances in Fractional Calculus, Sabatier, J., Agrawal, O.P., and Tenreiro Machado, J.A., Eds., Dordrecht: Springer, 2007.

    MATH  Google Scholar 

  43. New Trends in Nanotechnology and Fractional Calculus Applications, Baleanu, D., Güvenc, Z.B., and Tenreiro Machado, J.A., Eds., Dordrecht: Springer, 2010.

    MATH  Google Scholar 

  44. Deng, W., Short Memory Principle and a Predictor-Corrector Approach for Fractional Differential Equations, J. Comput. Appl. Math., 2007, vol. 206, pp. 174–188.

    Article  MathSciNet  MATH  Google Scholar 

  45. Podlubny, I., Matrix Approach to Discrete Fractional Calculus, Frac. Calc. Appl. Anal., 2000, vol. 3, no. 4, pp. 359–386.

    MathSciNet  MATH  Google Scholar 

  46. Podlubny, I., Matrix Approach to Discrete Fractional Calculus II: Partial Fractional Differential Equations, J. Comp. Phys., 2009, vol. 228, pp. 3137–3153.

    Article  MathSciNet  MATH  Google Scholar 

  47. Murillo, J.Q. and Yuste, S.B., On Three Explicit Difference Schemes for Fractional Diffusion and Diffusion-Wave Equations, Phys. Scr., 2009, vol. T136 (paper ID 014025).

  48. Tavazoei, M.S., A Note on Fractional-Order Derivatives of Periodic Functions, Automatica, 2010, vol. 46, pp. 945–948.

    Article  MathSciNet  MATH  Google Scholar 

  49. Tavazoei, M.S. and Haeri, M., A Proof for Non Existence of Periodic Solutions in ai]Time Invariant Fractional Order Systems, Automatica, 2009, vol. 45, pp. 1886–1890.

    Article  MathSciNet  MATH  Google Scholar 

  50. Yazdani, M. and Salarieh, H., On the Existence of Periodic Solutions in Time-Invariant Fractional Order Systems, Automatica, 2011, vol. 47, pp. 1834–1837.

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, Z.H. and Hu, H.Y., Stability of a Linear Oscillator with Damping Force of the Fractional-Order Derivative, Sci. China. Phys. Mech. & Astron., 2010, vol. 53, no. 2, pp. 345–352.

    Article  Google Scholar 

  52. Tavazoei, M.S., Haeri, M., and Nazari, N., Analysis of Undamped Oscillations Generated by Marginally Stable Fractional Order Systems, Signal Proc., 2008, vol. 88, pp. 2971–2978.

    Article  MATH  Google Scholar 

  53. Rekhviashvili, S.Sh., Lagrange Formalism with Fractional Derivative in the Mechanical Problems, Pis’ma v ZhTF, 2004, vol. 30, no. 2, pp. 33–37.

    Google Scholar 

  54. Chen, Y.Q. and Moore, K.L., Analytical Stability Bound for a Class of Delayed Fractional-Order Dynamic Systems, Nonlin. Dyn., 2002, vol. 29, pp. 191–200.

    Article  MathSciNet  MATH  Google Scholar 

  55. Hwang, C. and Cheng, Y.C., A Numerical Algorithm for Stability Testing of Fractional Delay Systems, Automatica, 2006, vol. 42, pp. 825–831.

    Article  MathSciNet  MATH  Google Scholar 

  56. Merrikh-Bayat, F. and Karimi-Ghartemani, M., An Efficient Numerical Algorithm for Stability Testing of Fractional-Delay Systems, ISA Trans., 2009, vol. 48, pp. 32–37.

    Article  Google Scholar 

  57. Moornani, K.A. and Haeri, M., On Robust Stability of LTI Fractional-Order Delay Systems of Retarded and Neutral Type, Automatica, 2010, vol. 46, pp. 362–368.

    Article  MATH  Google Scholar 

  58. Moornani, K.A. and Haeri, M., On Robust Stability of Linear Time Invariant Fractional-Order Systems with Real Parametric Uncertainties, ISA Trans., 2009, vol. 48, pp. 484–490.

    Article  Google Scholar 

  59. Xing, S.Y. and Lu, J.G., Robust Stability and Stabilization of Fractional-Order Linear Systems with Nonlinear Uncertain Parameters: An LMI Approach, Chaos, Solitons Fractals, 2009, vol. 42, pp. 1163–1169.

    Article  MathSciNet  MATH  Google Scholar 

  60. Ahn, H.-S., Chen, Y.Q., and Podlubny, I., Robust Stability Test of a Class of Linear Time-Invariant Interval Fractional-Order System Using Lyapunov Inequality, Appl. Math. Comp., 2007, vol. 187, pp. 27–34.

    Article  MathSciNet  MATH  Google Scholar 

  61. Ahn, H.-S. and Chen, Y.Q., Necessary and Sufficient Stability Condition of Fractional-Order Interval Linear Systems, Automatica, 2008, vol. 44, pp. 2985–2988.

    Article  MathSciNet  MATH  Google Scholar 

  62. Qian, D., Li, C., Agarwal, R.P., and Wong, P.J.Y., Stability Analysis of Fractional Differential System with Riemann-Liouville Derivative, Math. Comput. Model., 2010, vol. 52, pp. 862–874.

    Article  MathSciNet  MATH  Google Scholar 

  63. Deng, W., Smoothness and Stability of the Solutions for Nonlinear Fractional Differential Equations, Nonlin. Anal., 2010, vol. 72, pp. 1768–1777.

    Article  MATH  Google Scholar 

  64. El-Salam, S.A.A. and El-Sayed, A.M.A., On the Stability of Some Fractional-Order Non-Autonomous Systems, Electron. J. Qual. Theory Diff. Eq., 2007, no. 6, pp. 1–14, http://www.math.u-szeged.hu/ejqtde/.

    Google Scholar 

  65. Tavazoei, M.S. and Haeri, M., A Note on the Stability of Fractional Order Systems, Math. Comput. Simul., 2009, vol. 79, pp. 1566–1576.

    Article  MathSciNet  MATH  Google Scholar 

  66. Lakshmikantham, V., Leela, S., and Sambandham, M., Lyapunov Theory for Fractional Differential Equations, Commun. Appl. Anal., 2008, vol. 12, no. 4, pp. 365–376.

    MathSciNet  MATH  Google Scholar 

  67. Li, C., Gong, Z., Qian, D., and Chen, Y.Q., On the Bound of the Lyapunov Exponents for the Fractional Differential Systems, Chaos, 2010, vol. 20 (paper ID 013127).

  68. Trigeassou, J.C., Maamri, N., Sabatier, J., and Oustaloup, A., A Lyapunov Approach to the Stability of Fractional Differential Equations, Signal Proc., 2011, vol. 91, pp. 437–445.

    Article  MATH  Google Scholar 

  69. Zhang, F., Li, C., and Chen, Y.Q., Asymptotical Stability of Nonlinear Fractional Differential System with Caputo Derivative, Int. J. Diff. Eq., 2011, vol. 2011 (article ID 635165).

  70. Li, Y., Chen, Y.Q., and Podlubny, I., Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems, Automatica, 2009, vol. 45, pp. 1965–1969.

    Article  MathSciNet  MATH  Google Scholar 

  71. Li, Y., Chen, Y.Q., and Podlubny, I., Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag-Leffler Stability, Comput. Math. Appl., 2010, vol. 59, pp. 1810–1821.

    Article  MathSciNet  MATH  Google Scholar 

  72. Lazarević, M.P. and Spasić, A.M., Finite-Time Stability Analysis of Fractional Order Time-Delay Systems: Gronwall’s Approach, Math. Comput. Model., 2009, vol. 49, pp. 475–481.

    Article  MATH  Google Scholar 

  73. Zhang, X., Some Results of Linear Fractional Order Time-Delay System, Appl. Math. Comp., 2008, vol. 197, pp. 407–411.

    Article  MATH  Google Scholar 

  74. Wang, J.R., Lv, L., and Zhou Y., Ulam Stability and Data Dependence for Fractional Differential Equations with Caputo Derivative, Electron. J. Qualit. Theory Diff. Eq., 2011, vol. 2011, no. 63, pp. 1–10, http://www.math.u-szeged.hu/ejqtde/.

    Article  MathSciNet  Google Scholar 

  75. Edelman, M., Fractional Standard Map: Riemann-Liouville vs. Caputo, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 4573–4580.

    Article  MathSciNet  MATH  Google Scholar 

  76. Mansouri, R., Bettayeb, M., Djennoune, S., Approximation of High Order Integer Systems by Fractional Order Reduced-Parameters Models, Math. Comput. Model., 2010, vol. 51, pp. 53–62.

    Article  MathSciNet  MATH  Google Scholar 

  77. Feeny, B.F. and Lin, G., Fractional Derivatives Applied to Phase-Space Reconstructions, Nonlin. Dyn., 2004, vol. 38, pp. 85–99.

    Article  MathSciNet  MATH  Google Scholar 

  78. Manabe, S., The Non-integer Integral and Its Application to Control Systems, ETJ Jpn., 1961, vol. 6, no. 3/4, pp. 83–87.

    Google Scholar 

  79. Manabe, S., The System Design by Use of a Model Consisting of a Saturation and Noninteger Integrals, ETJ Jpn., 1963, vol. 8, no. 3/4, pp. 147–150.

    Google Scholar 

  80. Matignon, D., Stability Properties for Generalized Fractional Differential Systems, in Proc. Colloq. Fractional Differential Systems: Models, Methods and Applications, Paris, 1998, vol. 5, pp. 145–158.

    MathSciNet  MATH  Google Scholar 

  81. Chen, Y.Q., Petras, I., and Xue, D., Fractional Order Control-A Tutorial, in Proc. 2009 Am. Control Conf., St. Louis, 2009, pp. 1397–1411.

    Google Scholar 

  82. Tavazoei, M.S., Notes on Integral Performance Indices in Fractional-Order Control Systems, J. Proc. Control, 2010, vol. 20, pp. 285–291.

    Article  Google Scholar 

  83. Sabatier, J., Merveillaut, M., Malti, R., and Oustaloup, A., How to Impose Physically Coherent Initial Conditions to a Fractional System?, Commun. Nonlin. Sci. Numer. Simulat., 2010, vol. 15, pp. 1318–1326.

    Article  MathSciNet  MATH  Google Scholar 

  84. Trigeassou, J.C. and Maamri, N., Initial Conditions and Initialization of Linear Fractional Differential Equations, Signal Proc., 2011, vol. 91, pp. 427–436.

    Article  MATH  Google Scholar 

  85. Balachandran, K. and Park, J.Y., Controllability of Fractional Integrodifferential Systems in Banach Spaces, Nonlin. Anal.: Hybr. Syst., 2009, vol. 3, pp. 363–367.

    Article  MathSciNet  MATH  Google Scholar 

  86. Chang, Y.-K., Li, W.-T., and Nieto, J.J., Controllability of Evolution Differential Inclusions in Banach Spaces, Nonlin. Anal., 2007, vol. 67, pp. 623–632.

    Article  MathSciNet  MATH  Google Scholar 

  87. Chen, Y.Q., Ahn, H.-S., and Xue, D., Robust Controllability of Interval Fractional Order Linear Time Invariant Systems, Signal Proc., 2006, vol. 86, pp. 2794–2802.

    Article  MATH  Google Scholar 

  88. Tai, Z. and Wang, X., Controllability of Fractional-Order Impulsive Neutral Functional Infinite Delay Integrodifferential Systems in Banach Spaces, Appl. Math. Lett., 2009, vol. 22, pp. 1760–1765.

    Article  MathSciNet  MATH  Google Scholar 

  89. Tai, Z. and Lun, S., On Controllability of Fractional Impulsive Neutral Infinite Delay Evolution Integrodifferential Systems in Banach Spaces, Appl. Math. Lett., 2012, vol. 25, pp. 104–110.

    Article  MathSciNet  MATH  Google Scholar 

  90. Matar, M., Controllability of Fractional Semilinear Mixed Volterra-Fredholm Integrodifferential Equations with Nonlocal Conditions, Int. J. Math. Anal., 2010, vol. 4, no. 23, pp. 1105–1116.

    MathSciNet  MATH  Google Scholar 

  91. Wang, J.R., Zhou, Y., Wei, W., and Xu, H., Nonlocal Problems for Fractional Integrodifferential Equations via Fractional Operators and Optimal Controls, Comp. Math. Appl., 2011, vol. 62, pp. 1427–1441.

    Article  MathSciNet  MATH  Google Scholar 

  92. Tai, Z., Controllability of Fractional Impulsive Neutral Integrodifferential Systems with a Nonlocal Cauchy Condition in Banach Spaces, Appl. Math. Lett., 2011, vol. 24, pp. 2158–2161.

    Article  MathSciNet  MATH  Google Scholar 

  93. Debbouche, A. and Baleanu, D., Controllability of Fractional Evolution Nonlocal Impulsive Quasilinear Delay Integro-Differential Systems, Comp. Math. Appl., 2011, vol. 62, pp. 1442–1450.

    Article  MathSciNet  MATH  Google Scholar 

  94. Wang, J.R., Zhou, Y., and Wei, W., A Class of Fractional Delay Nonlinear Integrodifferential Controlled Systems in Banach Spaces, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 4049–4059.

    Article  MathSciNet  MATH  Google Scholar 

  95. Yan, Z., Controllability of Fractional-Order Partial Neutral Functional Integrodifferential Inclusions, J. Franklin Inst., 2011 (in press, doi:10.1016/j.jfranklin.2011.06.009).

    Google Scholar 

  96. Sakthivel, R., Ren, Y., and Mahmudov, N.I., On the Approximate Controllability of Semilinear Fractional Differential Systems, Comp. Math. Appl., 2011, vol. 62, pp. 1451–1459.

    Article  MathSciNet  MATH  Google Scholar 

  97. Wang, J.R. and Zhou, Y., Analysis of Nonlinear Fractional Control Systems in Banach Spaces, Nonlin. Anal., 2011, vol. 74, pp. 5929–5942.

    Article  MATH  Google Scholar 

  98. Balochian, S., Sedigh, A.K., and Zare, A., Stabilization ofMulti-Input Hybrid Fractional-Order Systems with State Delay, ISA Trans., 2011, vol. 50, pp. 21–27.

    Article  Google Scholar 

  99. Li, L., Yu, F., and Liu, X., Feedback Control of Fractional Nonlinear Differential Algebraic Systems with Hamiltonian Function Method, Appl. Math. Comp., 2008, vol. 197, pp. 904–913.

    Article  MathSciNet  MATH  Google Scholar 

  100. Balochian, S., Sedigh, A.K., and Zare, A., Variable Structure Control of Linear Time Invariant Fractional Order Systems Using a Finite Number of State Feedback Law, Commun. Nonlin. Sci. Numer. Simul., 2011, vol. 16, pp. 1433–1442.

    Article  MathSciNet  MATH  Google Scholar 

  101. Agrawal, O.P., Fractional Variational Calculus in Terms of Riesz Fractional Derivatives, J. Phys. A: Math. Theor., 2007, vol. 40, pp. 6287–6303.

    Article  MATH  Google Scholar 

  102. Agrawal, O.P., Fractional Variational Calculus and the Transversality Conditions, J. Phys. A: Math. Gen., 2006, vol. 39, pp. 10375–10384.

    Article  MATH  Google Scholar 

  103. Frederico, G.S.F. and Torres, D.F.M., Fractional Optimal Control in the Sense of Caputo and the Fractional Noether’s Theorem, Int. Math. Forum, 2008, vol. 3, no. 10, pp. 479–493.

    MathSciNet  MATH  Google Scholar 

  104. Agrawal, O.P., A General Formulation and Solution Scheme for Fractional Optimal Control Problems, Nonlin. Dyn., 2004, vol. 38, pp. 323–337.

    Article  MATH  Google Scholar 

  105. Agrawal, O.P., A Formulation and Numerical Scheme for Fractional Optimal Control Problems, J. Vibr. Control, 2008, vol. 14, nos. 9–10, pp. 1291–1299.

    Article  MATH  Google Scholar 

  106. Jelicic, Z.D. and Petrovacki, N., Optimality Conditions and a Solution Scheme for Fractional Optimal Control Problems, Struct. Multidisc. Optim., 2009, vol. 38, pp. 571–581.

    Article  MathSciNet  Google Scholar 

  107. Jarad, F., Abdeljawad, T., and Baleanu, D., Fractional Variational Optimal Control Problems with Delayed Arguments, Nonlin. Dyn., 2010, vol. 62, pp. 609–614.

    Article  MathSciNet  MATH  Google Scholar 

  108. Tricaud, C. and Chen, Y.Q., Time-Optimal Control of Systems with Fractional Dynamics, Int. J. Diff. Eq., 2010, vol. 2010 (article ID 461048).

  109. Tricaud, C. and Chen, Y.Q., An Approximate Method for Numerically Solving Fractional Order Optimal Control Problems of General Form, Comput. Math. Appl., 2010, vol. 59, pp. 1644–1655.

    Article  MathSciNet  MATH  Google Scholar 

  110. Özdemir, N., Karadeniz, D., and İskender, B.B., Fractional Optimal Control Problem of a Distributed System in Cylindrical Coordinates, Phys. Lett. A, 2009, vol. 373, pp. 221–226.

    Article  MathSciNet  MATH  Google Scholar 

  111. Mophou, G.M., Optimal Control of Fractional Diffusion Equation, Comput. Math. Appl., 2011, vol. 61, pp. 68–78.

    Article  MathSciNet  MATH  Google Scholar 

  112. Lü, Q., Bang-Bang Principle of Time Optimal Controls and Null Controllability of Fractional Order Parabolic Equations, Acta Math. Sinica, Engl. Ser., 2010, vol. 26, no. 12, pp. 2377–2386.

    Article  MATH  Google Scholar 

  113. Cai, X. and Liu, F., Numerical Simulation of the Fractional-Order Control System, J. Appl. Math. Comp., 2007, vol. 23, nos. 1–2, pp. 229–241.

    Article  MathSciNet  MATH  Google Scholar 

  114. Heaviside, O., Electromagnetic Theory, London: The Electrician, 1899.

    Google Scholar 

  115. Nigmatullin, R.Sh., Theory Electrochemical Diod, Dokl. Akad. Nauk SSSR, 1963, vol. 150, no. 3, pp. 600–603.

    Google Scholar 

  116. Nigmatullin, R.Sh., On the Possibility of Using Semiinfinite RC Cable to Generate some Special Functions, Proc. KAI, 1968, vol. 94, pp. 55–59.

    Google Scholar 

  117. Nigmatullin, R.Sh. and Belavin, V.A., Electrolythic Fractional Differentiating and Integrating Twoterminal Circuit, Tr. KAI, 1964, vol. 82 pp. 58–67.

    Google Scholar 

  118. Belavin, V.A., Using an Electrolythic Analog of the Semiinfinite RC Cable to Generate Power Functions, Tr. KAI, 1968, vol. 94, pp. 174–178.

    Google Scholar 

  119. Belavin, V.A., Study of the Platinum-Hydrogen Electrolythic Capacitor, Tr. KAI, 1968, vol. 94, pp. 104–109.

    Google Scholar 

  120. Afanas’ev, V.V. and Pol’skii, Yu.E., Metody analiza, diagnostiki i upravleniya povedeniem nelineinykh ustroistv i sistem s fraktal’nymi protsessami i khaoticheskoi dinamikoi (Methods of Analysis, Diagnosis, and Control of Behavior of the Nonlinear Devices and Systems with Fractal Processes and Chaotic Dynamics), Kazan: KGTU, 2004.

    Google Scholar 

  121. Gil’mutdinov, A.Kh., Rezistivno-emkostnye elementy s raspredelennymi parametrami: analiz, sintez i primenenie (Resistor-Capacitor Distributed-parameter Elements: Analysis, Design, and Application), Kazan: KGTU, 2005.

    Google Scholar 

  122. Krupenin, S.V. and Kolesov, V.V., Analog Implementation of the Semiintegrating Unit, Radiotekhnika, 2009, no. 3, pp. 114–118.

    Google Scholar 

  123. Fraktaly i drobnye operatory (Fractals and Fractional Operator), Gil’mutdinov, A.Kh., Ed., Kazan: “F en” AN RT, 2010.

    Google Scholar 

  124. Jesus, I.S. and Machado, J.A.T., Development of Fractional Order Capacitors Based on Electrolyte Processes, Nonlin. Dyn., 2009, vol. 56, pp. 45–55.

    Article  MATH  Google Scholar 

  125. Potapov, A.A., Fraktaly v radiofizike i radiolokatsii. Topologiya vyborki (Fractals in Radiophysics, Sample Topology), Moscow: Universitetskaya Kniga, 2005.

    Google Scholar 

  126. Potapov, A.A., Fractal Capacitor, Fractional Operators and Fractal Impedances, Nelin. Mir, 2006, vol. 4, nos. 4–5, pp. 172–187.

    Google Scholar 

  127. Djouambi, A., Charef, A., and Besancon, A.V., Optimal Approximation, Simulation, and Analog Realization of the Fundamental Fractional Order Transfer Function, Int. J. Appl. Math. Comput. Sci., 2007, vol. 17, no. 4, pp. 455–462.

    Article  MathSciNet  MATH  Google Scholar 

  128. Dorcak, L., Terpak, J., Petraš, I., and Dorčakova, F., Electronic Realization of the Fractional-Order System, Acta Montanistica Slovaca, 2007, vol. 12, no. 3, pp. 231–237.

    Google Scholar 

  129. Charef, A., Modeling and Analog Realization of the Fundamental Linear Fractional Order Differential Equation, Nonlin. Dyn., 2006, vol. 46, pp. 195–210.

    Article  MathSciNet  MATH  Google Scholar 

  130. Sheng, H., Sun, H.G., Coopmans, C., Chen, Y.Q., et al., A Physical Experimental Study of Variable-Order Fractional Integrator and Differentiator, Eur. Phys. J. Special Topics, 2011, vol. 193, pp. 93–104.

    Article  Google Scholar 

  131. Gutierrez, R.E., Rosario, J.M., and Machado, J.T., Fractional Order Calculus: Basic Concepts and Engineering Applications, Math. Probl. Eng., 2010, vol. 2010 (article ID 375858).

  132. Debnath, L., Recent Applications of Fractional Calculus to Science and Engineering, Int. J. Math. Math. Sci., 2003, vol. 54, pp. 3413–3442.

    Article  MathSciNet  Google Scholar 

  133. Podlubny, I., Petraš, I., Vinagre, B.M., O’Leary, P., et al., Analogue Realizations of Fractional-Order Controllers, Nonlin. Dyn., 2002, vol. 29, pp. 281–296.

    Article  MATH  Google Scholar 

  134. Chan, C.-H., Shyu, J.-J., and Yang, R.H.-H., A New Structure for the Design of Wideband Variable Fractional-Order FIR Differentiators, Signal Proc., 2010, vol. 90, pp. 2594–2604.

    Article  MATH  Google Scholar 

  135. Chan, C.-H., Shyu, J.-J., and Yang, R.H.-H., Iterative Design of Variable Fractional-Order IIR Differintegrators, Signal Proc., 2010, vol. 90, pp. 670–678.

    Article  MATH  Google Scholar 

  136. Chang, W.-D., Two-Dimensional Fractional-Order Digital Differentiator Design by Using Differential Evolution Algorithm, Digit. Signal Proc., 2009, vol. 19, pp. 660–667.

    Article  Google Scholar 

  137. Chen, Y.Q. and Vinagre, B.M., A New IIR-type Digital Fractional Order Differentiator, Signal Proc., 2003, vol. 83, pp. 2359–2365.

    Article  MATH  Google Scholar 

  138. Li, Y., Sheng, H., and Chen, Y.Q., On Distributed Order Integrator/Differentiator, Signal Proc., 2011, vol. 91, pp. 1079–1084.

    Article  MATH  Google Scholar 

  139. Gupta, M., Varshney, P., and Visweswaran, G.S., Digital Fractional-Order Differentiator and Integrator Models Based on First-Order and Higher Order Operators, Int. J. Circ. Theor. Appl., 2011, vol. 39, pp. 461–474.

    Article  Google Scholar 

  140. Krishna, B.T., Studies on Fractional Order Differentiators and Integrators: A Survey, Signal Proc., 2011, vol. 91, pp. 386–426.

    Article  MATH  Google Scholar 

  141. Lohmann, A.W., Mendlovic, D., and Zalevsky, Z., Fractional Transformation in Optics, in Progress in Optics, Wolf, E., Ed., Amsterdam: Elsevier, 1998, vol. 38, pp. 263–342.

    Google Scholar 

  142. Ozaktas, H.M., Kutay, M.A., and Mendlovic, D., Introduction to the Fractional Fourier Transform and Its Applications, in Advances in Imaging and Electron Physics, 1991, vol. 106, pp. 239–291.

    Article  Google Scholar 

  143. Almeida, L.B., The Fractional Fourier Transform and Time-Frequency Representations, IEEE Trans. Signal Process., 1994, vol. 42, pp. 3084–3091.

    Article  Google Scholar 

  144. Tajahuerce, E., Szoplik, T., Lancis, J., Climent, V., et al., Phase Object Fractional Differentiation Using Fourier Plane Filters, Pure Appl. Opt., 1997, vol. 6, pp. 481–490.

    Article  Google Scholar 

  145. Szoplik, T., Climent, V., Tajahuerce E., Lancis J., et al., Phase-Change Visualization in Two-Dimensional Phase Objects with a Semiderivative Real Filter, Appl. Opt., 1998, vol. 37, pp. 5472–5478.

    Article  Google Scholar 

  146. Lancis, J., Szoplik, T., Tajahuerce, E., Climent, V., et al., Fractional Derivative Fourier Plane Filter for Phase-Change Visualization, Appl. Opt., 1997, vol. 36, pp. 7461–7464.

    Article  Google Scholar 

  147. Kasprzak, H., Differentiation of a Noninteger Order and Its Optical Implementation, Appl. Opt., 1982, vol. 21, pp. 3287–3291.

    Article  Google Scholar 

  148. Davis, J.A., Smith, D.A., McNamara, D.E., Cottrell, D.M., and Campos, J., Fractional Derivatives-Analysis and Experimental Implementation, Appl. Opt., 2001, vol. 40, no. 32, pp. 5943–5948.

    Article  Google Scholar 

  149. Born, M. and Wolf, E., Principles of Optics, Oxford: Pergamon, 1968. Translated under the title Osnovy optiki, Moscow: Nauka, 1973.

    Google Scholar 

  150. Cuadrado-Laborde, S., All-Optical Ultrafast Fractional Differentiator, Opt. Quant. Electron., 2008, vol. 40, pp. 983–990.

    Article  Google Scholar 

  151. Cuadrado-Laborde, C. and Andres, M.V., In-Fiber All-Optical Fractional Differentiator, Opt. Lett., 2009, vol. 34, no. 6, pp. 833–835.

    Article  Google Scholar 

  152. Cuadrado-Laborde, C. and Andres, M.V., Proposal and Design of an In-Fiber All-Optical Fractional Integrator, Opt. Commun., 2010, vol. 283, pp. 5012–5015.

    Article  Google Scholar 

  153. Lurie, B.J., Three-Parameters Tunable Tilt-Integral-Derivative (TID) Controller, US Patent 5371670, 1994.

    Google Scholar 

  154. Oustaloup, A., La commade CRONE: commande robuste d’ordre non entier, Hermes: Paris, 1991.

    Google Scholar 

  155. Oustaloup, A., Melchoir, P., and Lanusse, P., The CRONE Control of Resonance Plants: Application to a Flexibile Transmission, Eur. J. Control, 1995, vol. 1, no. 2, pp. 113–121.

    Google Scholar 

  156. Oustaloup, A., Sabatier, J., and Lanusse, P., From Fractional Robustness to CRONE Control, Frac. Calc. Appl. Anal., 1999, vol. 2, no. 1, pp. 1–30.

    MathSciNet  MATH  Google Scholar 

  157. Oustaloup, A., Moreau, X., and Nouillant, M., The CRONE Suspension, Control Eng. Pract., 1996, vol. 4, no. 8, pp. 1101–1108.

    Article  Google Scholar 

  158. Podlubny, I., Fractional Differential Equations, San Diego: Academic, 1999.

    MATH  Google Scholar 

  159. Raynaud, H.F. and Zergainoh, A., State-Space Representation for Fractional Order Controllers, Automatica, 2000, vol. 36, pp. 1017–1021.

    Article  MathSciNet  MATH  Google Scholar 

  160. Saha, S., Das, S., Ghosh, R., Goswami B., et al., Fractional Order Phase Shaper Design with Bode’s Integral for Iso-Damped Control System, ISA Trans., 2010, vol. 49, pp. 196–206.

    Article  Google Scholar 

  161. Bode, H.W., Network Analysis and Feedback Amplifier Design, New York: Van Nostrand, 1945.

    Google Scholar 

  162. Petras, I., The Fractional-Order Controllers: Methods for Their Synthesis and Application, J. Electron. Eng., 1999, vol. 50, no. 9–10, pp. 284–288.

    Google Scholar 

  163. Dorf, R.C. and Bishop, R.H., Modern Control Systems, New York: Addison-Wesley, 1990.

    Google Scholar 

  164. Castillo, F.J., Feliu, V., Rivas, R., and Sanchez, L., Design of a Class of Fractional Controllers from Frequency Specifications with Guaranteed Time Domain Behavior, Comput. Math. Appl., 2010, vol. 59, pp. 1656–1666.

    Article  MathSciNet  MATH  Google Scholar 

  165. Padula, F. and Visioli, A., Tuning Rules for Optimal PID and Fractional-Order PID Controllers, J. Proc. Control, 2011, vol. 21, pp. 69–81.

    Article  Google Scholar 

  166. Hamamci, S.E., Stabilization Using Fractional-Order PI and PID Controllers, Nonlin. Dyn., 2008, vol. 51, pp. 329–343.

    Article  MATH  Google Scholar 

  167. Bouafoura, M.K. and Braiek, N.B., Controller Design for Integer and Fractional Plants Using Piecewise Orthogonal Functions, Commun. Nonlin. Sci. Numer. Simul., 2010, vol. 15, pp. 1267–1278.

    Article  MathSciNet  MATH  Google Scholar 

  168. Das, S., Saha, S., Das, S., and Gupta, A., On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes, ISA Trans., 2011, vol. 50, pp. 376–388.

    Article  Google Scholar 

  169. Yeroglu, C. and Tan, N., Classical Controller Design Techniques for Fractional Order Case, ISA Trans., 2011, vol. 50, pp. 461–472.

    Article  Google Scholar 

  170. Tavakoli-Kakhki, M. and Haeri, M., Fractional Order Model Reduction Approach Based on Retention of the Dominant Dynamics: Application in IMC Based Tuning of FOPI and FOPID Controllers, ISA Trans., 2011, vol. 50, pp. 432–442.

    Article  Google Scholar 

  171. Biswas, A., Das, S., Abraham, A., and Dasgupta, S., Design of Fractional-Order Controllers with an Improved Differential Evolution, Eng. Appl. Art. Intel., 2009, vol. 22, pp. 343–350.

    Article  MathSciNet  Google Scholar 

  172. Merrikh-Bayat, F., Rules for Selecting the Parameters of Oustaloup Recursive Approximation for the Simulation of Linear Feedback Systems Containing Controller, Commun. Nonlin. Sci. Numer. Simulat., 2012, vol. 17, pp. 1852–1861.

    Article  MathSciNet  Google Scholar 

  173. Petras, I. and Vinagre, B.M., Practical Application of Digital Fractional-Order Controller to Temperature Control, Acta Montanistica Slovaca, 2002, vol. 7, pp. 131–137.

    Google Scholar 

  174. Melicio, R., Mendes, V.M.F., and Catalao, J.P.S., Wind Turbines Equipped with Fractional-Order Controllers: Stress on the Mechanical Drive Train due to a Converter Control Malfunction, Wind Energy, 2011, vol. 14, pp. 13–25.

    Article  Google Scholar 

  175. Butkovskii, A.G., Fazovye portrety upravlyaemykh dinamicheskikh sistem (Phase Portraits of Controllable Dynamic Controls), Moscow: Nauka, 1985.

    Google Scholar 

  176. Butkovskii, A.G., Strukturnaya teoriya raspredelennykh sistem (Structural Theory of Distributed Systems), Moscow: Nauka, 1977.

    Google Scholar 

  177. Butkovskii, A.G., Kharakteristiki sistem s raspredelennymi parametrami (Characteristics of Distributed-parameter Systems), Moscow: Nauka, 1979.

    Google Scholar 

  178. Fel’dbaum, A.A. and Butkovskii, A.G., Metody teorii avtomaticheskogo upravleniya (Methods of the Automatic Control Theory), Moscow: Nauka, 1971.

    Google Scholar 

  179. Butkovskii, A.G., Metody upravleniya sistemami s raspredelennymi parametrami (Methods to Control the Distributed-parameter Systems), Moscow: Nauka, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.G. Butkovskii, S.S. Postnov, E.A. Postnova, 2013, published in Avtomatika i Telemekhanika, 2013, No. 5, pp. 3–34.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butkovskii, A.G., Postnov, S.S. & Postnova, E.A. Fractional integro-differential calculus and its control-theoretical applications. II. Fractional dynamic systems: Modeling and hardware implementation. Autom Remote Control 74, 725–749 (2013). https://doi.org/10.1134/S0005117913050019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117913050019

Keywords

Navigation