Skip to main content
Log in

Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation

  • Reviews
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The review is devoted to using the fractional integro-differential calculus for description of the dynamics of various systems and control processes. Consideration was given to the basic notions of the fractional integro-differential calculus and the problem of interpretation of the fractional operators. Presented were examples of physical systems described in terms of the apparatus under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samko, S.G., Kilbas, A.A., and Marichev, O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya (Integrals and Derivatives of Fractional order and Their Applications), Minsk: Nauka i Tekhnika, 1987.

    MATH  Google Scholar 

  2. Oldham, K.B. and Spanier, J., The Fractional Calculus, San Diego: Academic, 1974.

    MATH  Google Scholar 

  3. Machado, T.J., Kiryakova, V., and Mainardi, F., Recent History of Fractional Calculus, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 1140–1153.

    Article  MathSciNet  MATH  Google Scholar 

  4. Miller, K.S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: Wiley, 1993.

    MATH  Google Scholar 

  5. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., and Feliu, V., Fractional-order Systems and Controls: Fundamentals and Applications, London: Springer, 2010.

    Book  MATH  Google Scholar 

  6. Uchaikin, V.V., Metod drobnykh proizvodnykh (Method of Fractional Derivatives), Ul’yanovsk: Artishok, 2008.

    Google Scholar 

  7. Potapov, A.A., Fraktaly v radiofizike i radiolokatsii. Topologiya vyborki (Fractals in Radio Physics and Radio Location. Topology of Sampling) Moscow: Universitetskaya Kniga, 2005.

    Google Scholar 

  8. Fraktaly i drobnye operatory (Fractals and Fractional Operators), Gil’mutdinov, A.Kh., Ed., Kazan: “F en” AN RT, 2010.

    Google Scholar 

  9. Tarasov, V.E., Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka (Models of Theoretical Physics with Fractional-order Intergo-Differentiation), Izhevsk: RKhD, 2011.

    Google Scholar 

  10. Tarasov, V.E., Fractional Vector Calculus and Fractional Maxwell’s Equations, Ann. Phys., 2008, vol. 323, pp. 2756–2778.

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, S., Functional Fractional Calculus for System Identification and Controls, Berlin: Springer, 2008.

    MATH  Google Scholar 

  12. Nishimoto, K., An Essence of Nishimoto’s Fractional Calculus (Calculus of the 21st Century), Integrals and Differentiations of Arbitrary Order, Koriyama: Descartes, 1991.

    Google Scholar 

  13. Nakhushev, A.M., Drobnoe ischislenie i ego primenenie (Fractional Calculus and Its Application), Moscow: Fizmatlit, 2003.

    MATH  Google Scholar 

  14. Kiryakova, V.S., Generalized Fractional Calculus and Applications, New York: Wiley, 1994.

    MATH  Google Scholar 

  15. Margulies, T., Mathematics and Science Applications and Frontiers: With Fractional Calculus, Bloomington: Xlibris Corp., 2008.

    Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.

    MATH  Google Scholar 

  17. Podlubny, I., Fractional Differential Equations, San Diego: Academic, 1999.

    MATH  Google Scholar 

  18. Diethelm, K., The Analysis of Fractional Differential Equations, Berlin: Springer, 2010.

    Book  MATH  Google Scholar 

  19. Pskhu, A.V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka (Fractional-order Partial Derivative Equations), Moscow: Nauka, 2005.

    MATH  Google Scholar 

  20. Tarasov, V.E., Fractional Dynamics, Berlin: Springer, 2010.

    Book  MATH  Google Scholar 

  21. Zaslavsky, G.M., Hamiltonian Chaos and Fractional Dynamics, Oxford: Oxford Univ. Press, 2008.

    MATH  Google Scholar 

  22. Vasil’ev, V.V. and Simak, L.A., Drobnoe ischislenie i approksimatsionnye metody v modelirovanii dinamicheskikh sistem (Fractional Calculus and Methods of Approximation in Modeling of Dynamic Systems), Kiev: Nat. Akad. Nauk Ukrainy, 2008.

    Google Scholar 

  23. Lakshmikantham, V., Leela, S., and Vasundhara, D.J., Theory of Fractional Dynamic Systems, Cambridge: Cambridge Academic Publishers, 2009.

    MATH  Google Scholar 

  24. Petras, I., Fractional-Order Nonlinear Systems, Berlin: Springer, 2011.

    Book  MATH  Google Scholar 

  25. West, B.J., Bologna, M., and Grigolini, P., Physics of Fractal Operators, New York: Springer, 2003.

    Book  Google Scholar 

  26. Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity, London: Imperial College Press, 2010.

    Book  MATH  Google Scholar 

  27. Babenko, Yu.I., Metod drobnogo differentsirovaniya v prikladnykh zadachakh teorii teplomassoobmena (Method of Fractional Differentiation in the Applied Problems of the Theory of Heat-Mass Exchange), St. Petersburg: NPO “Professional,” 2009.

    Google Scholar 

  28. Caponetto, R., Dongola, G., Fortuna, L., and Petras, I., Fractional Order Systems. Modeling and Control Applications, Singapore: World Scientific, 2010.

    Google Scholar 

  29. Advances in Fractional Calculus, Sabatier, J., Agrawal, O.P., and Machado, J.A.T., Eds., Dordrecht: Springer, 2007.

    MATH  Google Scholar 

  30. New Trends in Nanotechnology and Fractional Calculus Applications, Baleanu, D., Güvenc, Z.B., and Machado, J.A.T., Eds., Dordrecht: Springer, 2010.

    MATH  Google Scholar 

  31. Applications of Fractional Calculus in Physics, Hilfer, R., Ed., Singapore: World Scientific, 2000.

    MATH  Google Scholar 

  32. Mathematical Methods in Engineering, Tas, K., Machado, J.A.T., and Baleanu, D., Eds., Dordrecht: Springer, 2007.

    MATH  Google Scholar 

  33. www.diogenes.bg/fcaa.

  34. fde.ele-math.com.

  35. www.nonlinearscience.com/journal2218-3892.php.

  36. Sonin, N.Ya., On Differentiation with Arbitrary Indicator, Mat. Sb., 1872, vol. 6, no. 1, pp. 1–38.

    Google Scholar 

  37. Letnikov, A.V., On Explanation of the Main Propositions of the Differentiation Theory with Arbitrary Indicator, Mat. Sb., 1872, vol. 6, no. 1, pp. 413–445.

    Google Scholar 

  38. Erdelyi, A. and Kober, H., Some Remarks on Hankel Transforms, Quart. J. Math. Oxford, 1940, ser. 11, no. 43, pp. 212–221.

    Google Scholar 

  39. Cossar, J., A Theorem on Cesaro Summability, J. London Math. Soc., 1941, vol. 16, pp. 56–68.

    Article  MathSciNet  Google Scholar 

  40. Samko, S.G. and Yakhshiboev, M.N., On OneModification of the Fractional Riemann-Liouville Integro-Differentiation as Applied to the R 1 Functions of any Behavior on Infinity, Izv. Vyssh. Uchebn. Zaved., Mat., 1992, no. 4, pp. 96–99.

    Google Scholar 

  41. Geisberg, S.P., Fractional Derivatives of the Axis-bounded Functions, Izv. Vyssh. Uchebn. Zaved., Mat., 1968, no. 11(78), pp. 51–69.

    Google Scholar 

  42. Letnikov, A.V., Theory of Differentiation with Arbitrary Indicator, Mat. Sb., 1868, vol. 3, pp. 1–68.

    Google Scholar 

  43. Letnikov, A.V., Studies of the Theory of Issledovaniya, ∫ xa (xu)p−1 f(u) Integrals, Mat. Sb., 1874, vol. 7, no. 1, pp. 5–205.

    Google Scholar 

  44. Post, E.L., Generalized Differentiation, Trans. Am. Math. Soc., 1930, vol. 32, no. 4, pp. 723–781.

    Article  MathSciNet  MATH  Google Scholar 

  45. Saigo, M., A Remark on Integral Operators Involving the Gauss Hypergeometric Functions, Math. Rep. Kyushu Univ., 1987, vol. 11, no. 2, pp. 135–143.

    MathSciNet  Google Scholar 

  46. Shuvalova, T.V., Some Compositional Properties of the Generalized Operators of Fractional Differentiation, Vestn. Sam. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2006, no. 42, pp. 45–48.

    Google Scholar 

  47. Hadamar, J., Essai sur l’étude des fonctions données par leur dévelopment de Taylor, J. Math. Pures Appl., 1892, vol. 8, no. 4, pp. 101–186.

    Google Scholar 

  48. Churikov, V.A., Fractional Analyisis Based on the Hadamard Operator, Izv. Tomsk. Politekh. Univ., 2008, vol. 312, no. 2, pp. 16–20.

    Google Scholar 

  49. Churikov, V.A., Fractional Analysis of the Order 1/2 Based on the Hadamard Approach, Izv. Tomsk. Politekh. Univ., 2008, vol. 312, no. 2, pp. 21–23.

    Google Scholar 

  50. Churikov, V.A., Program and Principles of Constructing Fractional Analysos, Izv. Tomsk. Politekh. Univ., 2009, vol. 314, no. 2, pp. 9–12.

    MathSciNet  Google Scholar 

  51. Churikov, V.A., Internal Algebra of the Operators of Fractional Integro-Differentiation, Izv. Tomsk. Politekh. Univ., 2009, vol. 314, no. 2, pp. 12–15.

    MathSciNet  Google Scholar 

  52. Dzhrbashyan, M.M., Generalized Riemann-Liouville Operator and Some Its Applications, Dokl. Akad. Nauk SSSR, 1967, vol. 177, no. 4, pp. 767–770.

    MathSciNet  Google Scholar 

  53. Dzhrbashyan, M.M., Generalized Riemann-Liouville Operator and Some Its Applications, Izv. Akad. Nauk SSSR, Mat., 1968, vol. 32, no. 5, pp. 1075–1111.

    MATH  Google Scholar 

  54. Zavada, P., Operator of Fractional Derivative in the Complex Plane, Commun. Math. Phys., 1998, vol. 192, pp. 261–285.

    Article  MathSciNet  MATH  Google Scholar 

  55. Ortigueira, M.D., A Coherent Approach to Non-Integer Order Derivatives, Signal Proc., 2006, vol. 86, pp. 2505–2515.

    Article  MATH  Google Scholar 

  56. Li, C.P., Dao, X.H., and Guo, P., Fractional Derivatives in Complex Planes, Nonlin. Anal., 2009, vol. 71, pp. 1857–1869.

    Article  MathSciNet  MATH  Google Scholar 

  57. Magin, R., Ortigueira, M.D., Podlubny, I., and Trujillo, J., On the Fractional Signals and Systems, Signal Proc., 2011, vol. 91, pp. 350–371.

    Article  MATH  Google Scholar 

  58. Gutierrez, R.E., Rosario, J.M., and Machado, J.T., Fractional Order Calculus: Basic Concepts and Engineering Applications, Math. Probl. Eng., 2010, vol. 2010 (article ID 375858).

  59. Cottrill-Stepherd, K. and Naber, M., Fractional Differential Forms, J. Math. Phys., 2001, vol. 42, no. 5, pp. 2203–2212.

    Article  MathSciNet  Google Scholar 

  60. Cottrill-Stepherd, K. and Naber, M., Fractional Differential Forms II, arXiv: math-ph/0301016.

  61. Chen, Y., Yan, Z., and Zhang, H., Applications of Fractional Exterior Differential in Three-Dimensional Space, Appl. Math. Mech., 2003, vol. 24, no. 3, pp. 256–260.

    Article  MathSciNet  MATH  Google Scholar 

  62. Kazbekov, K.K., Fractional Differential Forms in the Euclidean Space, Vladikavkaz. Mat. Zh., 2005, vol. 7, no. 2, pp. 41–54.

    MathSciNet  Google Scholar 

  63. Lavoie, J.L., Osler, T.J., and Tremblay, R., Fractional Derivatives and Special Functions, SIAM Rev., 1976, vol. 18, no. 2, pp. 240–268.

    Article  MathSciNet  MATH  Google Scholar 

  64. Kiryakova, V., The Multi-index Mittag-Leffler Functions as an Important Class of Special Functions of Fractional Calculus, Comput. Math. Appl., 2010, vol. 59, pp. 1885–1895.

    Article  MathSciNet  MATH  Google Scholar 

  65. Kiryakova, V., The Special Functions of Fractional Calculus as Generalized Fractional Calculus Operators of Some Basic Functions, Comput. Math. Appl., 2010, vol. 59, pp. 1128–1141.

    Article  MathSciNet  MATH  Google Scholar 

  66. Haubold, H.J., Mathai, A.M., and Saxena, R.K., Mittag-Leffler Functions and Their Applications, J. Appl. Math., 2011, vol. 2011 (article ID 298628).

  67. Stojanovic, M., Fractional Derivatives in Spaces of Generalized Functions, Frac. Calc. Appl. Anal., 2011, vol. 14, no. 1, pp. 125–137.

    MathSciNet  Google Scholar 

  68. Tarasov, V.E., Fractional Derivative as Fractional Power of Derivative, Int. J. Math., 2007, vol. 18, no. 3, pp. 281–299.

    Article  MathSciNet  MATH  Google Scholar 

  69. Tarasov, V.E., Fractional Powers of Derivatives in Classical Mechanics, Commun. Appl. Anal., 2008, vol. 12, no. 4, pp. 441–450.

    MathSciNet  MATH  Google Scholar 

  70. Tavazoei, M.S., A Note on Fractional-Order Derivatives of Periodic Functions, Automatica, 2010, vol. 46, pp. 945–948.

    Article  MathSciNet  MATH  Google Scholar 

  71. Tavazoei, M.S. and Haeri, M., A Proof for Non-Existence of Periodic Solutions in Time Invariant Fractional-Order Systems, Automatica, 2009, vol. 45, pp. 1886–1890.

    Article  MathSciNet  MATH  Google Scholar 

  72. Yazdani, M. and Salarieh, H., On the Existence of Periodic Solutions in Time-Invariant Fractional-Order Systems, Automatica, 2011, vol. 47, pp. 1834–1837.

    Article  MathSciNet  MATH  Google Scholar 

  73. Jumarie, G., Modified Riemann-Liouville Derivative and Fractional Taylor Series of Nondifferentiable Functions Further Results, Comput. Math. Appl., 2006, vol. 51, pp. 1367–1376.

    Article  MathSciNet  MATH  Google Scholar 

  74. Jumarie, G., Table of Some Basic Fractional Calculus Formulae Derived from a Modified Riemann-Liouville Derivative for Non-Differentiable Functions, Appl. Math. Lett., 2009, vol. 22, pp. 378–385.

    Article  MathSciNet  MATH  Google Scholar 

  75. Li, C.P. and Deng, W.H., Remarks on Fractional Derivatives, Appl. Math. Comput., 2007, vol. 187, no. 2, pp. 777–784.

    Article  MathSciNet  MATH  Google Scholar 

  76. Li, C.P., Qian, D., and Chen, Y.Q., On Riemann-Liouville and Caputo Derivatives, Discrete Dyn. Nat. Soc., 2011, vol. 2011 (article ID 562494).

  77. Luchko, Y., Maximum Principle and Its Application for the Time-Fractional Diffusion Equations, Frac. Calc. Appl. Anal., 2011, vol. 14, no. 1, pp. 110–124.

    MathSciNet  Google Scholar 

  78. Katugampola, U.N., New Approach to a Generalized Fractional Integral, Appl. Math. Comput., 2011, vol. 218, pp. 860–865.

    Article  MathSciNet  MATH  Google Scholar 

  79. Samko, S.G., Fractional Integration and Differentiation of Variable Order, Anal. Math., 1995, vol. 21, pp. 213–236.

    Article  MathSciNet  MATH  Google Scholar 

  80. Lorenzo, C.F. and Hartley, T.T., Variable Order and Distributed Order Fractional Operators, Nonlin. Dyn., 2002, vol. 29, pp. 57–98.

    Article  MathSciNet  MATH  Google Scholar 

  81. Valerio, D. and da Costa, J.S., Variable-Order Fractional Derivatives and Their Numerical Aproximations, Signal Proc., 2011, vol. 91, pp. 470–483.

    Article  MATH  Google Scholar 

  82. Sun, H., Chen, Y., and Chen, W., Time Fractional Differential EquationModel with Random Derivative Order, in Proc. ASME Int. Design Engin. Technical Conf. & Computers and Inform. in Engin. Conf. IDETC/CIE 2009, San Diego, 2009 (paper ID DETC2009-87483).

    Google Scholar 

  83. Al-Salam, W.A. and Verma, A., A Fractional Leibniz q-Formula, Pac. J. Math., 1975, vol. 60, pp. 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  84. Al-Salam, W.A., Some Fractional q-Integrals and q-Derivatives, Proc. Edin. Math. Soc., 1969, vol. 15, pp. 135–140.

    Article  MathSciNet  Google Scholar 

  85. Agrawal, R.P., Certain Fractional q-Integrals and q-Derivatives, Proc. Camb. Phil. Soc., 1969, vol. 66, pp. 365–70.

    Article  Google Scholar 

  86. Predrag, M.R., Sladana, D.M., and Miomir, S.S., Fractional Integrals and Derivatives in q-calculus, Appl. Anal. Discrete Math., 2007, vol. 1, pp. 311–323.

    Article  MathSciNet  MATH  Google Scholar 

  87. Atici, F.M. and Eloe, P.W., A Transform Method in Discrete Fractional Calculus, Int. J. Differ. Equat., 2007, vol. 2, no. 2, pp. 165–176.

    MathSciNet  Google Scholar 

  88. Atici, F.M. and Eloe, P.W., Initial Value Problems in Discrete Fractional Calculus, Proc. Am. Math. Soc., 2009, vol. 137, pp. 981–989.

    Article  MathSciNet  MATH  Google Scholar 

  89. Atici, F.M. and Eloe, P.W., Fractional q-Calculus on a Time Scale, J. Nonlin. Math. Phys., 2007, vol. 14, no. 3, pp. 341–352.

    Article  MathSciNet  MATH  Google Scholar 

  90. Holm, M.T., The Laplace Transform in Discrete Fractional Calculus, Comput. Math. Appl., 2011, vol. 62, pp. 1591–1601.

    Article  MathSciNet  MATH  Google Scholar 

  91. Abdeljawad, T. and Baleanu, D., Fractional Differences and Integration by Parts, J. Comput. Anal. Appl., 2011, vol. 13, no. 3, pp. 574–582.

    MathSciNet  MATH  Google Scholar 

  92. Abdeljawad, T. and Baleanu, D., Caputo q-Fractional Initial Value Problems and a q-Analogue Mittag-Leffler Function, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 4682–4688.

    Article  MathSciNet  MATH  Google Scholar 

  93. Abdeljawad, T., On Riemann and Caputo Fractional Differences, Comput. Math. Appl., 2011, vol. 62, pp. 1602–1611.

    Article  MathSciNet  MATH  Google Scholar 

  94. Miyakoda, T., Direct Discretization of the Fractional-order Differential by Using Chebyshev Series Expansion, Proc. Appl. Math. Mech., 2007, vol. 7, pp. 2020011–2020012.

    Article  Google Scholar 

  95. Zwillinger, D., Handbook of Differential Equations, New York: Academic, 1997.

    Google Scholar 

  96. Ahmad, B. and Sivasundaram, S., Existence of Solutions for Impulsive Integral Boundary Value Problems of Fractional Order, Nonlin. Anal.: Hybrid Syst., 2010, vol. 4, pp. 134–141.

    Article  MathSciNet  MATH  Google Scholar 

  97. Ahmad, B., Existence of Solutions for Irregular Boundary Value Problems of Nonlinear Fractional Differential Equations, Appl. Math. Lett., 2010, vol. 23, pp. 390–394.

    Article  MathSciNet  MATH  Google Scholar 

  98. Ahmad, B. and Nieto, J.J., Existence of Solutions for Nonlocal Boundary Value Problems of Higher-Order Nonlinear Fractional Differential Equations, Abstr. Appl. Anal., 2009, vol. 2009 (article ID 494720).

  99. Ahmad, B., Existence Results for Multi-Point Nonlinear Boundary Value Problems for Fractional Differential Equations, Memoirs Diff. Eq. Math. Phys., 2010, vol. 49, pp. 83–94.

    MATH  Google Scholar 

  100. Allison, J. and Kosmatov, N., Multi-Point Boundary Value Problems of Fractional Order, Commun. Appl. Anal., 2008, vol. 12, no. 4, pp. 451–458.

    MathSciNet  MATH  Google Scholar 

  101. Deng, J. and Ma, L., Existence and Uniqueness of Solutions of Initial Value Problems for Nonlinear Fractional Differential Equations, Appl. Math. Lett., 2010, vol. 23, pp. 676–680.

    Article  MathSciNet  MATH  Google Scholar 

  102. Devi, J.V. and Lakshmikantham, V., Nonsmooth Analysis and Fractional Differential Equations, Nonlin. Anal., 2009, vol. 70, pp. 4151–4157.

    Article  MATH  Google Scholar 

  103. El-Shahed, M. and Nieto, J.J., Nontrivial Solutions for a Nonlinear Multi-point Boundary Value Problem of Fractional Order, Comput. Math. Appl., 2010, vol. 59, pp. 3438–3443.

    Article  MathSciNet  MATH  Google Scholar 

  104. Kosmatov, N., Integral Equations and Initial Value Problems for Nonlinear Differential Equations of Fractional Order, Nonlin. Anal., 2009, vol. 70, pp. 2521–2529.

    Article  MathSciNet  MATH  Google Scholar 

  105. Mophou, G.M., Existence and Uniqueness of Mild Solutions to Impulsive Fractional Differential Equations, Nonlin. Anal., 2010, vol. 72, pp. 1604–1615.

    Article  MathSciNet  MATH  Google Scholar 

  106. Odibat, Z.M., Analytic Study on Linear Systems of Fractional Differential Equations, Comput. Math. Appl., 2010, vol. 59, pp. 1171–1183.

    Article  MathSciNet  MATH  Google Scholar 

  107. Zhou, Y. and Jiao, F., Nonlocal Cauchy Problem for Fractional Evolution Equations, Nonlin. Anal.: Real World Appl., 2011, vol. 11, pp. 4465–4475.

    Article  MathSciNet  Google Scholar 

  108. Agarwal, R.P., Benchohra, M., and Hamani, S., A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions, Acta Appl. Math., 2010, vol. 109, pp. 973–1033.

    Article  MathSciNet  MATH  Google Scholar 

  109. Xiao, F., Nonlocal Cauchy Problem for Nonautonomous Fractional Evolution Equations, Adv. Diff. Eq., 2011, vol. 2011 (article ID 483816).

  110. Cichon, M. and Salem, H.A.H., Set-Valued System of Fractional Differential Equations with Hysteresis, Appl. Math. Comput., 2010, vol. 215, pp. 3824–3829.

    Article  MathSciNet  MATH  Google Scholar 

  111. Agarwal, R.P., Belmekki, M., and Benchohra, M., A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative, Adv. Diff. Eq., 2009, vol. 2009 (article ID 981728).

  112. Salem, H.A.H., On the Fractional Calculus in Abstract Spaces and Their Applications to the Dirichlet-Type Problem of Fractional Order, Comput. Math. Appl., 2010, vol. 59, pp. 1278–1293.

    Article  MathSciNet  MATH  Google Scholar 

  113. Stojanović, M., Existence-Uniqueness Result for a Nonlinear n-Term Fractional Equation, J. Math. Anal. Appl., 2009, vol. 353, pp. 244–255.

    Article  MathSciNet  MATH  Google Scholar 

  114. Tatar, N., The Existence of Mild and Classical Solutions for a Second-Order Abstract Fractional Problem, Nonlin. Anal., 2010, vol. 73, pp. 3130–3139.

    Article  MathSciNet  MATH  Google Scholar 

  115. Ogorodnikov, E.N. and Yashagin, N.S., Formulation and Solution of the Cauchy-type Problems for the Second-order Differential Equations with Fractional Riemann-Liouville Derivatives, Vestn. Sam. Gos. Tekh. Univ., Ser. Phiz.-Mat. Nauki, 2010, no. 1(20), pp. 24–36.

    Google Scholar 

  116. Feng, W., Sun, S., Han, Z., and Zhao, Y., Existence of Solutions for a Singular System of Nonlinear Fractional Differential Equations, Comput. Math. Appl., 2011, vol. 62, pp. 1370–1378.

    Article  MathSciNet  MATH  Google Scholar 

  117. Kou, C., Zhou, H., and Ye, Y., Existence of Solutions of Initial Value Problems for Nonlinear Fractional Differential Equations on the Half-Axis, Nonlin. Anal., 2011, vol. 74, pp. 5975–5986.

    Article  MATH  Google Scholar 

  118. Saadatmandi, A. and Dehghan, M., A New OperationalMatrix for Solving Fractional-Order Differential Equations, Comput. Math. Appl., 2010, vol. 59, pp. 1326–1336.

    Article  MathSciNet  MATH  Google Scholar 

  119. Bhrawy, A.H., Alofib, A.S., and Ezz-Eldienb, S.S., A Quadrature Tau Method for Fractional Differential Equations with Variable Coefficients, Appl. Math. Lett., 2011, vol. 24, pp. 2146–2152.

    Article  MathSciNet  MATH  Google Scholar 

  120. Saeedi, H., Moghadam, M.M., Mollahasani, N., and Chuev, G.N., A CAS Wavelet Method for Solving Nonlinear Fredholm Integro-Differential Equations of Fractional Order, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 1154–1163.

    Article  MATH  Google Scholar 

  121. Li, Y., Solving a Nonlinear Fractional Differential Equation Using Chebyshev Wavelets, Commun. Nonlin. Sci. Numer. Simulat., 2010, vol. 15, pp. 2284–2292.

    Article  MATH  Google Scholar 

  122. Rehman, M. and Khan, R.A., The Legendre Wavelet Method for Solving Fractional Differential Equations, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 4163–4173.

    Article  MATH  Google Scholar 

  123. Lakestani, M., Dehghan, M., Irandoust-pakchin, S., The Construction of Operational Matrix of Fractional Derivatives Using B-spline Functions, Commun. Nonlin. Sci. Numer. Simulat., 2012, vol. 17, pp. 1149–1162.

    Article  MathSciNet  MATH  Google Scholar 

  124. Lizama, S., An Operator Theoretical Approach to a Class of Fractional Order Differential Equations, Appl. Math. Lett., 2011, vol. 24, pp. 184–190.

    Article  MathSciNet  MATH  Google Scholar 

  125. Li, K. and Peng, J., Laplace Transform and Fractional Differential Equations, Appl. Math. Lett., 2011, vol. 24, pp. 2019–2023.

    Article  MathSciNet  MATH  Google Scholar 

  126. Jafari, H. and Seifi, S., Solving a System of Nonlinear Fractional Partial Differential Equations Using Homotopy Analysis Method, Commun. Nonlin. Sci. Numer. Simulat., 2009, vol. 14, no. 5, pp. 1962–1969.

    Article  MathSciNet  MATH  Google Scholar 

  127. Zhang, X., Tang, B., and He, Y., Homotopy Analysis Method for Higher-Order Fractional Integro-Differential Equations, Comput. Math. Appl., 2011, vol. 62, pp. 3194–3203.

    Article  MathSciNet  MATH  Google Scholar 

  128. Ghazanfari, B. and Veisi, F., Homotopy Analysis Method for the Fractional Nonlinear Equations, J. King Saud Univ. Sci., 2011, vol. 23, pp. 389–393.

    Article  Google Scholar 

  129. Das, S., Analytical Solution of a Fractional Diffusion Equation by Variational Iteration Method, Comput. Math. Appl., 2009, vol. 57, no. 3, pp. 483–487.

    Article  MathSciNet  MATH  Google Scholar 

  130. Jafari, H. and Tajadodi, H., He’s Variational IterationMethod for Solving Fractional Riccati Differential Equation, Int. J. Diff. Eq., 2010, vol. 2010 (article ID 764738).

  131. Faraz, N., Khan, Y., Jafari, H., Yildirim, A., and Madanim, M., Fractional Variational IterationMethod via Modified Riemann-Liouville Derivative, J. King Saud Univ. Sci., 2011, vol. 23, pp. 413–417.

    Article  Google Scholar 

  132. Adomian, G., A Review of the Decomposition Method in Applied Mathematics, J. Math. Anal. Appl., 1988, vol. 135, pp. 501–544.

    Article  MathSciNet  MATH  Google Scholar 

  133. Adomian, G., Solution of Physical Problems by Decomposition, Comput. Math. Appl., 1994, vol. 27, no. 9/10, pp. 145–154.

    Article  MathSciNet  MATH  Google Scholar 

  134. Arora, H.L. and Abdelwahid, F.I., Solutions of Non-Integer Order Differential Equations via the Adomian Decomposition Method, Appl. Math. Lett., 1993, vol. 6, pp. 21–23.

    Article  MathSciNet  MATH  Google Scholar 

  135. Daftardar-Gejji, V. and Jafari, H., Solving a Multi-Order Fractional Differential Equation Using Adomian Decomposition, Appl. Math. Comput., 2007, vol. 189, pp. 541–548.

    Article  MathSciNet  MATH  Google Scholar 

  136. Jafari, H. and Daftardar-Gejji, V., Solving a System of Nonlinear Fractional Differential Equations Using Adomian Decomposition, J. Comput. Appl. Math., 2006, vol. 196, pp. 644–651.

    Article  MathSciNet  MATH  Google Scholar 

  137. Khan, Y. and Faraz, N., Modified Fractional Decomposition Method Having Integral w.r.t dξα, J. King Saud Univ. Sci., 2011, vol. 23, pp. 157–161.

    Article  Google Scholar 

  138. Huang, L., Li, X.-F., Zhao, Y., and Duan, X.-Y., Approximate Solution of Fractional Integro-Differential Equations by Taylor ExpansionMethod, Comput. Math. Appl., 2011, vol. 62, pp. 1127–1134.

    Article  MathSciNet  MATH  Google Scholar 

  139. Rida, S.Z. and Arafa, A.A.M., New Method for Solving Linear Fractional Differential Equations, Int. J. Diff. Eq., 2001, vol. 2011 (article ID 814132).

  140. Jia, M., Monotone Iterative Technique for Fractional Evolution Equations in Banach Spaces, J. Appl. Math., 2011, vol. 2011 (article ID 767186).

  141. Băleanu, D., Mustafa, O.G., and Agarwal, R.P., Asymptotic Integration of (1 + α)-order Fractional Differential Equations, Comput. Math. Appl., 2011, vol. 62, pp. 1492–1500.

    Article  MathSciNet  MATH  Google Scholar 

  142. Lakshmikantham, V., Theory of Fractional Functional Differential Equations, Nonlin. Anal., 2008, vol. 69, pp. 3337–3343.

    Article  MathSciNet  MATH  Google Scholar 

  143. Ahmad, B. and Sivasundaram, S., Some Basic Results for Fractional Functional Integro-Differential Equations, Commun. Appl. Anal., 2008, vol. 12, no. 4, pp. 467–478.

    MathSciNet  MATH  Google Scholar 

  144. dos Santos, J.P.C., Cuevas, C., and de Andrade, B., Existence Results for a Fractional Equation with State-Dependent Delay, Adv. Diff. Eq., 2011, vol. 2011 (article ID 642013).

  145. Agarwal, R.P., Zhou, Y., Wang, J.-R., and Luo, X., Fractional Functional Differential Equations with Causal Operators in Banach Spaces, Math. Comput. Modelling, 2011, vol. 54, pp. 1440–1452.

    Article  MathSciNet  MATH  Google Scholar 

  146. Wei, X.T. and Lu, X.Z., The Periodic Solutions of the Compound Singular Fractional Differential System with Delay, Int. J. Diff. Eq., 2010, vol. 2010 (article ID 509286).

  147. Cernea, A., On a Nonlinear Fractional Order Differential Inclusion, Electron. J. Qual. Theory Diff. Eq., 2010, no. 78, pp. 1–13, http://www.math.u-szeged.hu/ejqtde/.

    Google Scholar 

  148. Cernea, A., Continuous Version of Filippov’s Theorem for Fractional Differential Inclusions, Nonlin. Anal., 2010, vol. 72, pp. 204–208.

    Article  MathSciNet  MATH  Google Scholar 

  149. Vityuk, A.N., Existence of Solutions of Differential Inclusions with Partial Derivatives of Fractional Orders, Izv. Vyssh. Uchebn. Zaved., Mat., 1997, no. 8(423), pp. 13–19.

    Google Scholar 

  150. Vityuk, A.N., Differential Equations of Fractional Order with Multivalues Solutions, Visnik Odes’k. Derzh. Univ., Fiz.-Mat. Nauki, 2003, vol. 8, no. 2, pp. 108–112.

    MATH  Google Scholar 

  151. Ouahab, A., Some Results for Fractional Boundary Value Problem of Differential Inclusions, Nonlin. Anal., 2008, vol. 69, pp. 3877–3896.

    Article  MathSciNet  MATH  Google Scholar 

  152. Ibrahim, R.W., Existence of Convex and Nonconvex Local Solutions for Fractional Differential Inclusions, Electron. J. Diff. Eq., 2009, vol. 2009, no. 18, pp. 1–13, http://ejde.math.txstate.edu.

    Google Scholar 

  153. Cernea, A., Some Remarks on a Fractional Differential Inclusion with Non-Separated Boundary Conditions, Electron. J. Qual. Theory Diff. Eq., 2011, no. 45, pp. 1–14, http://www.math.u-szeged.hu/ejqtde/.

    Google Scholar 

  154. Henderson, J. and Ouahab, A., Impulsive Differential Inclusions with Fractional Order, Comput. Math. Appl., 2010, vol. 59, pp. 1191–1226.

    Article  MathSciNet  MATH  Google Scholar 

  155. Hamani, S., Benchohra, M., and Graef, J.R., Existence Results for Boundary-Value Problems with Nonlinear Fractional Differential Inclusions and Integral Conditions, Electron. J. Diff. Eq., 2010, vol. 2010, no. 20, pp. 1–16, http://ejde.math.txstate.edu.

    MathSciNet  Google Scholar 

  156. Yang, D., Existence of Solutions for Fractional Differential Inclusions with Boundary Conditions, Electron. J. Diff. Eq., 2010, vol. 2010, no. 92, pp. 1–10, http://ejde.math.txstate.edu.

    Google Scholar 

  157. Girejko, E., Mozyrska, D., and Wyrwas, M., A Sufficient Condition of Viability for Fractional Differential Equations with the Caputo Derivative, J. Math. Anal. Appl., 2011, vol. 381, pp. 146–154.

    Article  MathSciNet  MATH  Google Scholar 

  158. Henderson, J. and Ouahab, A., Fractional Functional Differential Inclusions with Finite Delay, Nonlin. Anal., 2009, vol. 70, pp. 2091–2105.

    Article  MathSciNet  MATH  Google Scholar 

  159. Darwish, M.A. and Ntouyas, S.K., On Initial and Boundary Value Problems for Fractional Order Mixed Type Functional Differential Inclusions, Comput. Math. Appl., 2010, vol. 59, pp. 1253–1265.

    Article  MathSciNet  MATH  Google Scholar 

  160. Hartley, T.T. and Lorenzo, C.F., Dynamics and Control of Initialized Fractional-Order Systems, Nonlin. Dyn., 2002, vol. 29, no. 1–4, pp. 201–233.

    Article  MathSciNet  MATH  Google Scholar 

  161. Heymans, N. and Podlubny, I., Physical Interpretation of Initial Conditions for Fractional Differential Equations with Riemann-Liouville Fractional Derivatives, Rheol. Acta., 2006, vol. 45, pp. 765–771.

    Article  Google Scholar 

  162. Ortigueira, M.D., On the Initial Conditions in Continuous-Time Fractional Linear Systems, Signal Proc., 2003, vol. 83, pp. 2301–2309.

    Article  MATH  Google Scholar 

  163. Sabatier, J., Merveillaut, M., Malti, R., and Oustaloup, A., How to Impose Physically Coherent Initial Conditions to a Fractional System?, Commun. Nonlin. Sci. Numer. Simulat., 2010, vol. 15, pp. 1318–1326.

    Article  MathSciNet  MATH  Google Scholar 

  164. Trigeassou, J.C. and Maamri, N., Initial Conditions and Initialization of Linear Fractional Differential Equations, Signal Proc., 2011, vol. 91, pp. 427–436.

    Article  MATH  Google Scholar 

  165. Rutman, R.S., On Physical Interpretations of Fractional Integration and Differentiation, Teor. Mat. Fiz., 1995, vol. 105, no. 3, pp. 393–404.

    Article  MathSciNet  MATH  Google Scholar 

  166. Chadaev, V.A., The Local-Nonlocal Formulation of the Cauchy Problem for the Nonlinear Fractionalorder Equation in a Certain Class, Vestn. Sam. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), pp. 214–217.

    Google Scholar 

  167. Ogorodnikov, E.N., Some Aspects of the Theory of Initial Problems for the Differential Equations with Riemann-Liouville Derivatives, Vestn. Sam. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), pp. 10–23.

    Google Scholar 

  168. Mansouri, R., Bettayeb, M., and Djennoune, S., Multivariable Fractional System Approximation with Initial Conditions Using Integral State Space Representation, Comput. Math. Appl., 2010, vol. 59, pp. 1842–1851.

    Article  MathSciNet  MATH  Google Scholar 

  169. Mansouri, R., Bettayeb, M., Djennoune, S., Comparison Between Two Approximation Methods of State Space Fractional Systems, Signal Proc., 2011, vol. 91, pp. 461–469.

    Article  MATH  Google Scholar 

  170. Riewe, F., Mechanics with Fractional Derivatives, Phys. Rev. E, 1997, vol. 55, no. 3, pp. 3581–3592.

    Article  MathSciNet  Google Scholar 

  171. Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., and Baleanu, D., The Hamilton Formalism with Fractional Derivatives, J. Math. Anal. Appl., 2007, vol. 327, pp. 891–897.

    Article  MathSciNet  MATH  Google Scholar 

  172. Jumarie, G., Lagrangian Mechanics of Fractional Order, Hamilton-Jacobi Fractional PDE and Taylor’s Series of Non-Differentiable Functions, Chaos, Solitons Fractals, 2007, vol. 32, pp. 969–987.

    Article  MathSciNet  MATH  Google Scholar 

  173. Cresson, J. and Inizan, P., Variational Formulations of Differential Equations and Asymmetric Fractional Embedding, J. Math. Anal. Appl., 2012, vol. 385, pp. 975–997.

    Article  MathSciNet  MATH  Google Scholar 

  174. Agrawal, O.P., Formulation of Euler-Lagrange Equations for Fractional Variational Problems, J. Math. Anal. Appl., 2002, vol. 272, pp. 368–379.

    Article  MathSciNet  MATH  Google Scholar 

  175. Almeida, R. and Torres, D.F.M., Calculus of Variations with Fractional Derivatives and Fractional Integrals, Appl. Math. Lett., 2009, vol. 22, pp. 1816–1820 (arXiv: 0907.1024v1).

    Article  MathSciNet  MATH  Google Scholar 

  176. Atanackovis, T.M., Konjik, S., Pilipović, S., and Simić, S., Variational Problems with Fractional Derivatives: Invariance Conditions and Nöther’s Theorem, Nonlin. Anal., 2009, vol. 71, pp. 1504–1517.

    Article  Google Scholar 

  177. Almeida, R., Fractional Variational Problems with the Riesz-Caputo Derivative, Appl. Math. Lett., 2012, vol. 25, pp. 142–148.

    Article  MathSciNet  MATH  Google Scholar 

  178. Baleanu, D. and Trujillo, J.I., A New Method of Finding the Fractional Euler-Lagrange and Hamilton Equations within Caputo Fractional Derivatives, Commun. Nonlin. Sci. Numer. Simul., 2010, vol. 15, pp. 1111–1115.

    Article  MathSciNet  MATH  Google Scholar 

  179. Jarad, F., Abdeljabad, T., and Baleanu, D., Fractional Variational Principles with Delay within Caputo Derivatives, Rep. Math. Phys., 2010, vol. 65, no. 1, pp. 17–28.

    Article  MathSciNet  MATH  Google Scholar 

  180. Almeida, R. and Torres, D.F.M., Necessary and Sufficient Conditions for the Fractional Calculus of Variations with Caputo Derivatives, Commun. Nonlin. Sci. Numer. Simul., 2011, vol. 16, pp. 1490–1500 (arXiv:1007.2937v1).

    Article  MathSciNet  MATH  Google Scholar 

  181. Malinowska, A.B. and Torres, D.F.M., Generalized Natural Boundary Conditions for Fractional Variational Problems in Terms of the Caputo Derivative, Comput. Math. Appl., 2010, vol. 59, pp. 3110–3116.

    Article  MathSciNet  MATH  Google Scholar 

  182. Frederico, G.S.F. and Torres, D.F.M., A Formulation of Noether’s Theorem for Fractional Problems of the Calculus of Variations, J. Math. Anal. Appl., 2007, vol. 334, pp. 834–846.

    Article  MathSciNet  MATH  Google Scholar 

  183. Frederico, G.S.F. and Torres, D.F.M., Fractional Conservation Laws in Optimal Control Theory, Nonlin. Dyn., 2008, vol. 53, pp. 215–222.

    Article  MathSciNet  MATH  Google Scholar 

  184. Frederico, G.S.F. and Torres, D.F.M., Fractional Noether’s Theorem in the Riesz-Caputo Sense, Appl. Math. Comput., 2010, vol. 217, pp. 1023–1033.

    Article  MathSciNet  MATH  Google Scholar 

  185. Frederico, G.S.F. and Torres, D.F.M., Fractional Optimal Control in the Sense of Caputo and the Fractional Noether’s Theorem, Int. Math. Forum, 2008, vol. 3, no. 10, pp. 479–493.

    MathSciNet  MATH  Google Scholar 

  186. Baleanu, D., Mihaela-Baleanu, C., Golmankhaneh, A.K., and Golmankhaneh, A.K., The Fractional Virial Theorem, Frac. Diff. Eq., 2011, vol. 1, no. 1, pp. 89–97.

    MathSciNet  Google Scholar 

  187. Agrawal, O.P., Fractional Variational Calculus and the Transversality Conditions, J. Phys. A: Math. Gen., 2006, vol. 39, pp. 10375–10384.

    Article  MATH  Google Scholar 

  188. Tomovski, Z., Hilfer, R., and Srivastava, H.M., Fractional and Operational Calculus with Generalized Fractional Derivative Operators and Mittag-Leffler Type Functions, Integral. Transf. Spec. Funct., 2010, vol. 21, no. 11, pp. 797–814.

    Article  MathSciNet  MATH  Google Scholar 

  189. Agrawal, O.P., Muslih, S.I., and Baleanu, D., Generalized Variational Calculus in Terms of Multi-Parameters Fractional Derivatives, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 4756–4767.

    Article  MathSciNet  MATH  Google Scholar 

  190. Bastos, N.R.O., Ferreira, R.A.C., and Torres, D.F.M., Discrete-Time Fractional Variational Problems, Signal Proc., 2011, vol. 91, pp. 513–524.

    Article  MATH  Google Scholar 

  191. Wang, D. and Xiao, A., Fractional Variational Integrators for Fractional Variational Problems, Commun. Nonlin. Sci. Numer. Simulat., 2002, vol. 17, pp. 602–610.

    Article  MathSciNet  Google Scholar 

  192. Podlubny, I., Geometrical and Physical Interpretation of Fractional Integration and Fractional Differentiation, Frac. Calc. Appl. Anal., 2002, vol. 5, no. 4, pp. 367–386 (arXiv: math/0110241v1).

    MathSciNet  MATH  Google Scholar 

  193. Podlubny, I., Despotovic, V., Skovranek, T., and McNaughton, B.H., Shadows on the Walls: Geometric Interpretation of Fractional Integration, J. Online Math. Its Appl., 2007, vol. 7 (article ID 1664), http://www.maa.org/joma/Volume7/Podlubny/GIFI.html.

  194. Nizami, S.T., Khan, N., and Khan, F.H., A New Approach to Represent the Geometric and Physical Interpretation of Fractional Order Derivatives of Polynomial Function and Its Application in Field of Sciences, Can. J. Comp. Math., Nat. Sci., Eng. Med., 2010, vol. 1, no. 1, pp. 1–8.

    Google Scholar 

  195. Ben Adda, F., Geometric Interpretation of the Fractional Derivative, J. Frac. Calc., 1997, vol. 11, pp. 21–52.

    MathSciNet  MATH  Google Scholar 

  196. Nigmatullin, R.R., Fractional Integral and Its Physical Interpretation, Teor. Mat. Fiz., 1992, vol. 90, no. 3, pp. 354–368.

    Article  MathSciNet  Google Scholar 

  197. Le Mehaute, A., Nigmatullin, R.R., and Nivanen, L., Fl”eches du temps et géometrie fractale, Paris: Hermez, 1998.

    Google Scholar 

  198. Nigmatullin, R.R. and Le Mehaute, A., The Geometrical and Physical Meaning of the Fractional Integral with Complex Exponent, Intern. J. Sci., “Georesourses,” 2004, no. 1(8), pp. 2–9.

    Google Scholar 

  199. Nigmatullin, R.R. and Le Mehaute, A., Is There Geometrical/Physical Meaning of the Fractional Integral with Complex Exponent?, J. Non-Cryst. Sol., 2005, vol. 351, pp. 2888–2899.

    Article  Google Scholar 

  200. Ren, F.-Y., Yu, Z.-G., and Su, F., Fractional Integral Associated to the Self-Similar Set or the Generalized Self-Similar Set and Its Physical Interpretation, Phys. Lett. A, 1996, vol. 219, no. 1-1, pp. 59–68.

    Article  MathSciNet  MATH  Google Scholar 

  201. Yu, Z.-G., Ren, F.-Y., and Zhou, J., Fractional Integral Associated to Generalized Cookie-Cutter Set and Its Physical Interpretation, J. Phys. A: Math. Gen., 1997, vol. 30, no. 15, pp. 5569–5578.

    Article  MathSciNet  MATH  Google Scholar 

  202. Ren, F.Y. and Liang, J.-R., The Non-Integer Operation Associated to Random Variation Sets of the Self-Similar Set, Physica A, 2000, vol. 286, no. 1–2, pp. 45–55.

    Article  MATH  Google Scholar 

  203. Ren, F.-Y., Liang, J.-R., Wang, X.-T., and Qiu, W.-Y., Integrals and Derivatives on Net Fractals, Chaos, Solitons Fractals, 2003, vol. 16, pp. 107–117.

    Article  MathSciNet  MATH  Google Scholar 

  204. Moshrefi-Torbati, M. and Hammond, J.K., Physical and Geometrical Interpretation of Fractional Operators, J. Franklin Inst., 1998, vol. 335B, no. 6, pp. 1077–1086.

    Article  MathSciNet  MATH  Google Scholar 

  205. Rutman, R.S., On the Paper by R.R. Nigmatullin “Fractional Integral and Its Physical Interpretation,” Teor. Mat. Fiz., 1994, vol. 100, no. 3, pp. 476–478.

    Article  MathSciNet  Google Scholar 

  206. Gorenflo, R., Afterthoughts on Interpretation of Fractional Derivatives and Integrals, in Proc. 2nd Int. Workshop “Transform Methods and Special Functions,” Varna’96, Sofia, 1998, pp. 589–591.

    Google Scholar 

  207. Stanislavsky, A.A. and Weron, K., Exact Solution of Averaging Procedure over the Cantor Set, Physica A, 2002, vol. 303, no. 1–2, pp. 57–66.

    Article  MathSciNet  MATH  Google Scholar 

  208. Stanislavsky, A.A., Probabilistic Interpretation of the Fractional-order Integral, Teor. Mat. Fiz., 2004, vol. 138, no. 3, pp. 491–507.

    Article  Google Scholar 

  209. Parvate, A. and Gangal, A.D., Calculus on Fractal Subsets of Real Line-I: Formulation, Fractals, 2009, vol. 17, no. 1, pp. 53–81.

    Article  MathSciNet  MATH  Google Scholar 

  210. Parvate, A., Satin, S., and Gangal, A.D., Calculus on Fractal Curves in Rn, Fractals, 2011, vol. 19, no. 1, pp. 15–27.

    Article  MathSciNet  MATH  Google Scholar 

  211. Tatom, F.B., The Relationship between Fractional Calculus and Fractals, Fractals, 1995, vol. 3, no. 1, pp. 217–229.

    Article  MathSciNet  MATH  Google Scholar 

  212. Yao, K., Su, W.Y., and Zhou, S.P., On the Connection between the Order of Fractional Calculus and the Dimensions of a Fractal Function, Chaos, Solitons Fractals, 2005, vol. 23, pp. 621–629.

    Article  MathSciNet  MATH  Google Scholar 

  213. Tarasov, V.E., Fractional Generalization of Liouville Equations, Chaos, 2004, vol. 14, no. 1, pp. 123–127.

    Article  Google Scholar 

  214. Tarasov, V.E., Fractional Fokker-Planck Equation for Fractal Media, Chaos, 2005, vol. 15, no. 2 (paper ID 023102).

    Google Scholar 

  215. Tarasov, V.E., Dynamics of Fractal Solids, Int. J. Mod. Phys. B, 2005, vol. 19, no. 27, pp. 4103–4114.

    Article  MATH  Google Scholar 

  216. Tarasov, V.E., Electromagnetic Fields on Fractals, Mod. Phys. Lett. A, 2006, vol. 21, no. 20, pp. 1587–1600.

    Article  MATH  Google Scholar 

  217. Tarasov, V.E., Multipole Moments of Fractal Distribution of Charges, Mod. Phys. Lett. B, 2005, vol. 19, no. 22, pp. 1107–1118.

    Article  MathSciNet  MATH  Google Scholar 

  218. Tarasov, V.E., Continuous Medium Model for Fractal Media, Phys. Lett. A, 2005, vol. 336, pp. 167–174.

    Article  MATH  Google Scholar 

  219. Tarasov, V.E., Possible Experimental Test of Continuous Medium Model for Fractal Media, Phys. Lett. A, 2005, vol. 341, pp. 467–472.

    Article  Google Scholar 

  220. Tarasov, V.E., Wave Equation for Fractal Solid String, Mod. Phys. Lett. B, 2005, vol. 19, no. 15, pp. 721–728.

    Article  MATH  Google Scholar 

  221. Tarasov, V.E., Universal Electromagnetic Waves in Dielectric, J. Phys.: Cond. Mat., 2008, vol. 20, pp. 175223–175229.

    Article  Google Scholar 

  222. Tarasov, V.E., Electromagnetic Field of Fractal Distribution of Charged Particles, Phys. Plasmas., 2005, vol. 12 (paper ID 082106).

  223. Tarasov, V.E. and Zaslavsky, G.M., Fractional Ginzburg-Landau Equation for Fractal Media, Physica A, 2005, vol. 353, pp. 249–261.

    Article  Google Scholar 

  224. Metzler, R. and Nonnenmacher, T.F., Space- and Time-Fractional Diffusion and Wave Equations, Fractional Fokker-Planck Equations, and Physical Motivation, Chem. Phys., 2002, vol. 284, pp. 67–90.

    Article  Google Scholar 

  225. Ortigueira, M.D. and Batista, A.G., On the Relation Between the Fractional Brownian Motion and the Fractional Derivatives, Phys. Lett. A, 2008, vol. 372, pp. 958–968.

    Article  MathSciNet  MATH  Google Scholar 

  226. Bagley, R.L. and Torvik, P.J., A Theoretical Basis for Application of Fractional Calculus to Viscoelasticity, J. Rheol., 1983, vol. 27, no. 3, pp. 201–210.

    Article  MATH  Google Scholar 

  227. Bagley, R.L. and Torvik, P.J., On the Fractional Calculus Model of Viscoelastic Behavior, J. Rheol., 1986, vol. 30, no. 1, pp. 133–155.

    Article  MATH  Google Scholar 

  228. Debnath, L., Recent Applications of Fractional Calculus to Science and Engineering, Int. J. Math. Math. Sci., 2003, vol. 54, pp. 3413–3442.

    Article  MathSciNet  Google Scholar 

  229. Vazquez, L., From Newton’s Equation to Fractional Diffusion and Wave Equations, Adv. Diff. Eq., 2011, vol. 2011 (article ID 169421).

  230. Nigmatullin, R.R., Theory of Dielectric Relaxation in Non-Crystalline Solids: From a Set of Micromotions to the Averaged Collective Motion in the Mesoscale Region, Physica B, 2005, vol. 358, pp. 201–215.

    Article  Google Scholar 

  231. Nigmatullin, R.R., “Fractional” Kinetic Equations and “Universal” Decoupling of a Memory Function in Mesoscale Region, Physica A, 2006, vol. 363, pp. 282–298.

    Article  Google Scholar 

  232. Miskinis, P., The Havriliak-Negami Susceptibility as a Nonlinear and Nonlocal Process, Physica Scr., 2009, vol. T136 (paper ID 014019).

  233. Zhang, Y., Benson, D.A., and Reeves, D.M., Time and Space Nonlocalities Underlying Fractional-Derivative Models: Distinction and Literature Review of Field Applications, Adv. Water Res., 2009, vol. 32, pp. 561–581.

    Article  Google Scholar 

  234. Luchko, Y.F., Rivero, M., Trujillo, J.J., and Velasco, M.P., Fractional Models, Non-Locality, and Complex Systems, Comp. Math. Appl., 2010, vol. 59, pp. 1048–1056.

    Article  MathSciNet  MATH  Google Scholar 

  235. Mainardi, F., Mura, A., and Pagnini, G., The M-Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey, Int. J. Diff. Eq., 2010, vol. 2010 (article ID 104505).

  236. Uchaikin, V.V., Automodel Anomalous Diffusion and Stable Laws, Usp. Phys. Nauk, 2003, vol. 173, no. 8, pp. 847–876.

    Article  Google Scholar 

  237. Lazopoulos, K.A., Non-local Continuum Mechanics and Fractional Calculus, Mech. Res. Commun., 2006, vol. 33, pp. 753–757.

    Article  MathSciNet  MATH  Google Scholar 

  238. Sibatov, R.T. and Uchaikin, V.V., Fractional Differential Kinetics of Charge Transfer in Disordered Semiconductors, Fiz. Tekhn. Poluprov., 2007, vol. 41, no. 3, pp. 346–351.

    Google Scholar 

  239. Jesus, I.S. and Machado, J.A.T., Development of Fractional Order Capacitors Based on Electrolyte Processes, Nonlin. Dyn., 2009, vol. 56, pp. 45–55.

    Article  MATH  Google Scholar 

  240. Jesus, I.S., Machado, J.A.T., and Cunha, J.B., Fractional Electrical Impedances in Botanical Elements, J. Vibr. Control, 2008, vol. 14, no. 9–10, pp. 1389–1402.

    Article  MATH  Google Scholar 

  241. Meral, F.C., Royston, T.J., and Magin, R., Fractional Calculus in Viscoelasticity: An Experimental Study, Commun. Nonlin. Sci. Numer. Simul., 2010, vol. 15, pp. 939–945.

    Article  MathSciNet  MATH  Google Scholar 

  242. Uchaikin, V.V., On Fractional Differential Models of Acceleration of Cosmic Rays in the Galaxy, Pis’ma ZhETF, 2010, vol. 92, no. 4, pp. 226–232.

    Google Scholar 

  243. Tarasov, V.E., Map of Discrete System into Continuous, J. Math. Phys., 2006, vol. 47 (paper ID 092901).

  244. Tarasov, V.E., Continuous Limit of Discrete Systems with Long-Range Interaction, J. Phys. A: Math. Gen., 2006, vol. 39, pp. 14895–14910.

    Article  MathSciNet  MATH  Google Scholar 

  245. Tarasov, V.E., Differential Equations with Fractional Derivative and Universal Map with Memory, J. Phys. A: Math. Theor., 2009, vol. 42 (paper ID 465102).

  246. Tarasov, V.E., Discrete Map with Memory from Fractional Differential Equation of Arbitrary Positive Order, J. Math. Phys., 2009, vol. 50 (paper ID 122703).

  247. Cottone, G., Di Paola, M., and Zingales, M., Fractional Mechanical Model for the Dynamics of Non-Local Continuum, Lect. Notes Elect. Eng., 2009, vol. 11, pp. 389–423.

    Article  Google Scholar 

  248. Korabel, N., Zaslavsky, G.M., and Tarasov, V.E., Coupled Oscillators with Power-Law Interaction and Their Fractional Dynamics Analogues, Commun. Nonlin. Sci. Numer. Simul., 2007, vol. 12, pp. 1405–1417.

    Article  MathSciNet  MATH  Google Scholar 

  249. Carpinteri, A., Cornetti, P., Sapora, A., Di Paola, M., and Zingales, M., Fractional Calculus in Solid Mechanics: Local Versus Non-Local Approach, Phys. Scr., 2009, vol. T136 (paper ID 014003).

  250. Naqvi, S.A., Naqvi, Q.A., and Hussain, A., Modelling of Transmission through a Chiral Slab Using Fractional Curl Operator, Opt. Commun., 2006, vol. 266, pp. 404–406.

    Article  Google Scholar 

  251. Wu, J.-N., Huang, C.-H., Cheng, S.-C., and Hsieh, W.-F., Spontaneous Emission from a Two-Level Atom in Anisotropic One-Band Photonic Crystals: A Fractional Calculus Approach, Phys. Rev. A, 2010, vol. 81 (paper ID 023827).

  252. Mainardi, F. and Gorenflo, R., Time-Fractional Derivatives in Relaxation Processes: a Tutorial Survey, Frac. Calc. Appl. Anal., 2007, vol. 10, no. 3, pp. 269–308.

    MathSciNet  MATH  Google Scholar 

  253. Rekhviashvili, S.Sh., Modeling Flicker Noise with the Use of Fractional Integro-Differentiation, Zh. Teor. Fiz., 2006, vol. 76, no. 6, pp. 123–126.

    Google Scholar 

  254. Manabe, S., The Non-integer Integral and Its Application to Control Systems, ETJ Japan, 1961, vol. 6, no. 3/4, pp. 83–87.

    Google Scholar 

  255. Manabe, S., The System Design by Use of a Model Consisting of a Saturation and Noninteger Integrals, ETJ Japan, 1963, vol. 8, no. 3/4, pp. 147–150.

    Google Scholar 

  256. Hilfer, R., Fractional Dynamics, Irreversibility and Ergodicity Breaking, Chaos, Solitons Fractals, 1995, vol. 5, no. 8, pp. 1475–1484.

    Article  MathSciNet  MATH  Google Scholar 

  257. Vainstein, M.H., Costa, I.V.L., and Oliveira, F.A., Mixing, Ergodicity and the Fluctuation-Dissipation Theorem in Complex Systems, Lect. Notes Phys., 2006, vol. 688, pp. 159–188.

    Article  Google Scholar 

  258. Gaies, A. and El-Akrmi, A., Fractional Variational Principle in Macroscopic Picture, Phys. Scr., 2004, vol. 70, pp. 7–10.

    Article  MATH  Google Scholar 

  259. Jumarie, G., Probability Calculus of Fractional Order and Fractional Taylor’s Series Application to Fokker-Planck Equation and Information of Non-Random Functions, Chaos, Solitons Fractals, 2009, vol. 40, pp. 1428–1448.

    Article  MathSciNet  MATH  Google Scholar 

  260. Jumarie, G., Path Probability of Random Fractional Systems Defined by White Noises in Coarse-Grained Time. Application of Fractional Entropy, Frac. Diff. Eq., 2011, vol. 1, no. 1, pp. 45–87.

    MathSciNet  Google Scholar 

  261. Cottone, G., Di Paola, M., and Butera, S., Stochastic Dynamics of Nonlinear Systems with a Fractional Power-Law Nonlinear Term: The Fractional Calculus Approach, Prob. Eng. Mech., 2011, vol. 26, pp. 101–108.

    Article  Google Scholar 

  262. Ramirez, L.E.S. and Coimbra, C.F.M., On the Selection and Meaning of Variable Order Operators for Dynamic Modeling, Int. J. Diff. Eq., 2010, vol. 2010 (article ID 846107).

  263. Stanislavsky, A.A., The Stochastic Nature of Complexity Evolution in the Fractional Systems, Chaos, Solitons Fractals, 2007, vol. 34, pp. 51–61.

    Article  MathSciNet  MATH  Google Scholar 

  264. Repin, O.N. and Saichev, A.I., Fractional Poisson Law, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2005, vol. 43, no. 9, pp. 823–826.

    MathSciNet  Google Scholar 

  265. Machado, J.A.T., A Probabilistic Interpretation of the Fractional-order Differentiation, Frac. Calc. Appl. Anal., 2003, vol. 6, no. 1, pp. 73–80.

    MATH  Google Scholar 

  266. Machado, J.A.T., Fractional Derivatives: Probability Interpretation and Frequency Response of Rational Approximations, Commun. Nonlin. Sci. Numer. Simulat., 2009, vol. 14, pp. 3492–3497.

    Article  Google Scholar 

  267. Machado, J.A.T., Time-Delay and Fractional Derivatives, Adv. Diff. Eq., 2011, vol. 2011 (article ID 934094).

  268. Ubriaco, M.R., Entropies Based on Fractional Calculus, Phys. Lett. A, 2009, vol. 373, pp. 2516–2519.

    Article  MathSciNet  MATH  Google Scholar 

  269. Butkovskii, A.G., Strukturnaya teoriya raspredelennykh sistem (Structural Theory of Distributed Systems), Moscow: Nauka, 1977.

    Google Scholar 

  270. Butkovskii, A.G., Kharakteristiki sistem s raspredelennymi parametrami (Characteristics of Distributed-parameter Systems), Moscow: Nauka, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.G. Butkovskii, S.S. Postnov, E.A. Postnova, 2013, published in Avtomatika i Telemekhanika, 2013, No. 4, pp. 3–42.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butkovskii, A.G., Postnov, S.S. & Postnova, E.A. Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation. Autom Remote Control 74, 543–574 (2013). https://doi.org/10.1134/S0005117913040012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117913040012

Keywords

Navigation