Automation and Remote Control

, Volume 74, Issue 3, pp 506–520 | Cite as

A model of institutional control

  • M. A. Gorelov
Large Scale Systems Control


An hierarchical two-player game is analyzed. Player 1 delegates the right of choosing his strategies to the partner and controls the constraints imposed on the choice of the lower-level player. Moreover, the described model is shown to possess a connection to games admitting the exchange of (generally) untrue information.


Remote Control Gain Function Uncertain Factor Institutional Control Control Decentralization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burkov, V.N., Osnovy matematicheskoi teorii aktivnykh sistem (Foundations of the Mathematical Theory of Active Systems), Moscow: Nauka, 1977.Google Scholar
  2. 2.
    Burkov, V.N. and Enaleev, A.K., Optimality of the Principle of Fair Play Management. Necessary and Sufficient Conditions for Reliability of Information in Active Systems, Autom. Remote Control, 1985, vol. 46, no. 3, part 1, pp. 341–348.zbMATHGoogle Scholar
  3. 3.
    Burkov, V.N., Enaleev, A.K., and Kalenchuk, V.F., Optimality of the Open Management Principle. Computation of the Optimal Planning Procedure and Its Properties, Autom. Remote Control, 1986, no. 9, part 2, pp. 1242–1248.Google Scholar
  4. 4.
    Germeier, Yu.B. and Moiseev, N.N., On Some Problems of Hierarchical Systems Theory, in Problemy prikladnoi matematiki i mekhaniki (Problems of Applied Mathematics and Mechanics), Moscow: Nauka, 1971, pp. 30–43.Google Scholar
  5. 5.
    Gorelik, V.A. and Kononenko, A.F., Teoretiko-igrovye modeli prinyatiya reshenii v ekologo-ekonomicheskikh sistemakh (Game-theoretic Models of Decision Making in Ecological and Economic Systems), Moscow: Radio i Svyaz’, 1982.Google Scholar
  6. 6.
    Gorelov, M.A., The Geometry of Informational Extensions, Autom. Remote Control, 2009, vol. 70, no. 8, pp. 1396–1405.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Enaleev, A.K., Optimal Mechanism for an Active System with Communication, Upravlen. Bol’shimi Sist., 2010, no. 29, pp. 108–127.Google Scholar
  8. 8.
    Kononenko, A.F., The Role of Information on Opponent’s Gain Function in Two-player Games with a Fixed Sequence of Moves, Zh. Vychisl. Mat. Mat. Fiz., 1973, vol. 13, no. 2, pp. 311–317.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kukushkin, N.S., On a Game with Incomplete Information, Zh. Vychisl. Mat. Mat. Fiz., 1973, vol. 13, no. 1, pp. 210–216.Google Scholar
  10. 10.
    Kukushkin, N.S. and Morozov, V.V., Teoriya neantagonisticheskikh igr (Theory of Nonantagonistic Games), Moscow: Mosk. Gos. Univ., 1984.zbMATHGoogle Scholar
  11. 11.
    Moiseev, N.N., Elementy teorii optimal’nykh sistem (Foundations of Optimal Systems Theory), Moscow: Nauka, 1975.Google Scholar
  12. 12.
    Novikov, D.A., Teoriya upravleniya organizatsionnymi sistemami (Theory of Organizational Systems Control), Moscow: Mosk. Psykhol.-Sotsial. Inst., 2005.Google Scholar
  13. 13.
    Novikov, D.A., Institutsional’noe upravlenie organizatsionnymi sistemami (Institutional Control of Organizational Systems), Moscow: Inst. Probl. Upravlen., 2004.Google Scholar
  14. 14.
    Uspenskii, V.A. and Semenov, A.L., Teoriya algoritmov: osnovnye otkrytiya i prilozheniya (Theory of Algorithms: Basic Results and Applications), Moscow: Nauka, 1987.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. A. Gorelov
    • 1
  1. 1.Dorodnicyn Computing CentreRussian Academy of SciencesMoscowRussia

Personalised recommendations