Automation and Remote Control

, Volume 74, Issue 3, pp 491–505 | Cite as

Optimal incentive-compatible mechanisms in active systems

  • A. K. Enaleev
Large Scale Systems Control


We consider mechanisms in two-level active systems, where additional conditions of incentive compatibility are imposed on planning procedures and incentive schemes to coordinate preferences of agents and a principal. These conditions ensure plan fulfillment and truth-telling (strategy-proofness). Finally, sufficient conditions of optimal incentive-compatible mechanisms are established.


Remote Control Penalty Function Maximal Growth Rate Incentive Scheme Incentive Compatibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burkov, V.N., Osnovy matematicheskoi teorii aktivnykh sistem (Fundamentals of the Mathematical Theory of Active Systems), Moscow: Nauka, 1997.Google Scholar
  2. 2.
    Burkov, V.N. and Enaleev, A.K., Optimality of the Principle of Fair Play Management. Necessary and Sufficient Conditions for Reliability of Information in Active Systems, Autom. Remote Control, 1985, vol. 46, no. 3, part 1, pp. 341–348.zbMATHGoogle Scholar
  3. 3.
    Burkov, V.N., Enaleev, A.R., and Kondrat’ev, V.V., 2-Level Active Systems. 4. The Cost of Decentralization of Operating Mechanisms, Autom. Remote Control, 1980, vol. 41, no. 6, part 2, pp. 829–835.Google Scholar
  4. 4.
    Burkov, V.N., Enaleev, A.K., and Lavrov, Yu.G., Optimal Mechanisms for Planning and Stimulation in Active Systems, Autom. Remote Control, 1992, vol. 53, no. 10, part 2, pp. 1579–1585.MathSciNetGoogle Scholar
  5. 5.
    Burkov, V.N. and Kondrat’ev, V.V., Mekhanizmy funktsionirovaniya organizatsionnykh sistem (Operation Mechanisms of Organizational Systems), Moscow: Nauka, 1981.zbMATHGoogle Scholar
  6. 6.
    Germeier, Yu.B., Igry s neprotivopolozhnymi interesami (Games with Noncontradictory Interests), Moscow: Nauka, 1976.Google Scholar
  7. 7.
    Gorelik, V.A. and Kononenko, A.F., Teoretiko-igrovye modeli prinyatiya reshenii v ekologo-ekonomicheskikh sistemakh (Game-theoretic Decision Making Models in Ecological-economic Systems), Moscow: Radio i Svyaz’, 1982.Google Scholar
  8. 8.
    Enaleev, A.K., Optimal Mechanism for an Active System with Communication, Upravlen. Bol’shimi Sist., 2010, vol. 29, pp. 108–127.Google Scholar
  9. 9.
    Kononenko, A.F., The Role of Information on the Opponent’s Objective Function in Two-Person Games with a Fixed Sequence of Moves, Zh. Vychisl. Mat. Mat. Fiz., 1973, no. 2, pp. 311–317.Google Scholar
  10. 10.
    Mesarovich, M.D., Mako, D., and Takahara, Y., Theory of Hierarchical Multilevel Systems, New York: Academic, 1970. Translated under the title Teoriya ierarkhicheskikh mnogourovnevykh sistem, Moscow: Mir, 1973.Google Scholar
  11. 11.
    Control Mechanisms: A Textbook, Novikov, D.A., Ed., Moscow: LENAND, 2011.Google Scholar
  12. 12.
    Mas-Colell, A., Whinston, M.D., and Green, J.R., Microeconomic Theory, Oxford: Oxford Univ. Press, 1995.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. K. Enaleev
    • 1
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations