Advertisement

Automation and Remote Control

, Volume 74, Issue 3, pp 471–490 | Cite as

Development of structural methods for the study of complex dynamical systems

  • V. I. Vasil’ev
  • B. G. Ilyasov
  • R. A. Munasypov
Topical Issue
  • 66 Downloads

Abstract

We analyze a research direction related to the development of methods for study and design of complex system structures, a method founded by academician B.N. Petrov. The progress of structural design methods is outlined along four directions: the ordinal mapping method, structural design based on signal and state digraphs, the structural functions method, and design of nonlinear controller structures based on artificial neural networks.

Keywords

Remote Control Structural Function Automate Control System Signal Graph Neural Network Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleksandrov, A.G., Sintez regulyatorov mnogomernykh sistem (Controller Design for Multidimensional Systems), Moscow: Mashinostroenie, 1986.Google Scholar
  2. 2.
    Andreev, Yu.N., Upravlenie konechnomernymi lineinymi ob”ektami (Control for Finite-Dimensional Linear Objects), Moscow: Nauka, 1976.Google Scholar
  3. 3.
    Baranchuk, E.I., Vzaimosvyazannye i mnogokonturnye reguliruemye sistemy (Interconnected and Multicircuit Controllable Systems), Leningrad: Energiya, 1968.Google Scholar
  4. 4.
    Besekerskii, V.A. and Popov, E.P., Teoriya sistem avtomaticheskogo regulirovaniya (Theory of Automated Control Systems), Moscow: Nauka, 1975.Google Scholar
  5. 5.
    Bodner, V.A., Sistemy upravleniya letatel’nymi apparatami (Control Systems for Flying Vehicles), Moscow: Mashinostroenie, 1973.Google Scholar
  6. 6.
    Voronov, A.A., Ustoichivost’, upravlyaemost’, nablyudaemost’ (Stability, Controllability, Observability), Moscow: Nauka, 1979.Google Scholar
  7. 7.
    Voronov, A.A., Osnovy teorii avtomaticheskogo upravleniya: avtomaticheskoe regulirovanie nepreryvnykh lineinykh sistem (Fundamentals of Automated Control Theory: Automated Control for Continuous Linear Systems), Moscow: Energiya, 1980.Google Scholar
  8. 8.
    Vostrikov, A.S., Upravlenie dinamicheskimi ob”ektami (Control for Dynamic Objects), Novosibirsk: Novosib. Elektrotekhn. Inst., 1971.Google Scholar
  9. 9.
    Krasovskii, A.A., Sistemy avtomaticheskogo upravleniya poletom i ikh analiticheskoe konstruirovanie (Automated Flight Control Systems and Their Analytic Constructions), Moscow: Nauka, 1973.Google Scholar
  10. 10.
    Meerov, M.V., Sistemy mnogosvyaznogo regulirovaniya (Multiconnected Control Systems), Moscow: Nauka, 1965.Google Scholar
  11. 11.
    Meerov, M.V., Sintez struktur sistem avtomaticheskogo regulirovaniya vysokoi tochnosti (Structural Design for High Precision Automated Control Systems), Moscow: Nauka, 1967.Google Scholar
  12. 12.
    Morozovskii, V.G., Mnogosvyaznye sistemy avtomaticheskogo regulirovaniya (Multiconnected Automated Control Systems), Moscow: Energiya, 1970.Google Scholar
  13. 13.
    Netushil, A.V., Teoriya avtomaticheskogo upravleniya (Automated Control Theory), Moscow: Nauka, 1983.Google Scholar
  14. 14.
    Smagina, E.M., Voprosy analiza lineinykh mnogomernykh ob”ektov s ispol’zovaniem ponyatiya nulya sistemy (Analysis of Linear Multidimensional Objects with the Notion of a System Zero), Tomsk: Tom. Univ., 1990.Google Scholar
  15. 15.
    Sobolev, O.S., Metody issledovaniya lineinykh mnogosvyaznykh sistem (Studies in Linear Multiconnected Systems), Moscow: Energoatomizdat, 1985.Google Scholar
  16. 16.
    Solodovnikov, V.V. and Tumarkin, V.N., Teoriya slozhnosti i proektirovanie sistem upravleniya (Complexity Theory and Control Systems Design), Moscow: Nauka, 1990.zbMATHGoogle Scholar
  17. 17.
    Tsypkin, Ya.Z., Osnovy teorii avtomaticheskikh sistem (Fundamentals of Automated Systems Theory), Moscow: Nauka, 1977.Google Scholar
  18. 18.
    Chinaev, P.I., Metody analiza i sinteza mnogomernykh avtomaticheskikh sistem (Analysis and Synthesis of Multidimensional Automated Systems), Kiev: Tekhnika, 1969.Google Scholar
  19. 19.
    Yanushevskii, R.T., Teoriya lineinykh optimal’nykh mnogosvyaznykh sistem upravleniya (Theory of Linear Optimal Multiconnected Control Systems), Moscow: Nauka, 1973.Google Scholar
  20. 20.
    Bohn, E.V., Design and Synthesis Methods for a Class of Multivariable Feedback Control System Based on Variable Methods, Trans. AIEE, 1962, no. 81, pp. 109–116.Google Scholar
  21. 21.
    Boksenbom, A. and Hood, R., General Algebraic Method Applied to Control Analysis of Complex Engine Types, NASA Tech. Rept. 980, 1950.Google Scholar
  22. 22.
    Chen, C.T., Linear System Theory and Design, New York: Holt, Reeinhart and Winston, 1984.Google Scholar
  23. 23.
    Desoer, C.A., Notes for a Second Course on Linear Systems, New York: Van Nostrand Reinhold, 1970.zbMATHGoogle Scholar
  24. 24.
    Kalman, R.E., Falb, P.L., and Arbib, M.A., Topics in Mathematical System Theory, New York: McGraw-Hill, 1969. Translated under the title Ocherki po matematicheskoi teorii sistem, Moscow: Mir, 1971.zbMATHGoogle Scholar
  25. 25.
    Kavanagh, R.J., The Application of Matrix Methods to Multivariable Control Systems, J. Franklin Inst., 1957, vol. 262(9), pp. 349–367.MathSciNetGoogle Scholar
  26. 26.
    Kwakernaak, H. and Silvan, R., Linear Optimal Control Systems, New York: Wiley, 1972.zbMATHGoogle Scholar
  27. 27.
    MacFarlane, J.A.G., Complex Variable Methods for Linear Multivariable Feedback Systems, London: Taylor and Francis, 1980.Google Scholar
  28. 28.
    Mesarovic, M.D., The Control of Multivariable Systems, New York: Wiley, 1960.Google Scholar
  29. 29.
    Rosenbrock, H.H., State-Space and Multivariable Theory, London: Nelson, 1970.zbMATHGoogle Scholar
  30. 30.
    Wolowich, W.A., Linear Multivariable Systems, New York: Springer-Verlag, 1974.CrossRefGoogle Scholar
  31. 31.
    Wonham, W.M., Linear Multivariable Control: A Geometric Approach, New York: Springer, 1979.zbMATHCrossRefGoogle Scholar
  32. 32.
    Optimizatsiya mnogomernykh sistem upravleniya gazoturbinnykh dvigatelei letatel’nykh apparatov (Optimizing Multidimensional Control Systems for Gas Turbine Engines of Flying Vehicles), Shevyakov, A.A. and Mart’yanova, T.S., Eds., Moscow: Mashinostroenie, 1989.Google Scholar
  33. 33.
    Petrov, B.N., On Construction and Transformation of Structural Circuits, Izv. Akad. Nauk USSR, 1945, no. 12, pp. 1146–1162.Google Scholar
  34. 34.
    Zadeh, L.A. and Desoer, C.A., Linear System Theory: The State Space Approach, New York: McGraw-Hill, 1963. Translated under the title Teoriya lineinykh sistem. Metod prostranstva sostoyanii, Moscow: Nauka, 1970.zbMATHGoogle Scholar
  35. 35.
    Mason, S.J. and Zimmerman, H.J., Electronic Circuits, Signals, and Systems, New York: Wiley, 1960. Translated under the title Elektricheskie tsepi, signaly i sistemy, Moscow: Inostrannaya Literatura, 1963.Google Scholar
  36. 36.
    Zhuk, K.D., A Structural Design Method for Multiconnected Systems based on Signal Graphs, Avtom. Telemekh., 1965, no. 6, pp. 53–57.Google Scholar
  37. 37.
    Raitsyn, T.M., Sintez sistem avtomaticheskogo upravleniya metodom napravlennykh grafov (Synthesis of Automated Control Systems with the Method of Directed Graphs), Moscow: Energiya, 1970.Google Scholar
  38. 38.
    Kolpakova, N.P. and Petrov, B.N., Structural Design Methods for Multichannel Systems with Graph Theory, in Teoriya i metody postroeniya sistem mnogosvyaznogo regulirovaniya (Theory and Design Methods for Multiconnected Control Systems), Moscow: Nauka, 1973, pp. 18–38.Google Scholar
  39. 39.
    Babak S.F., Il’yasov B.G., and Rutkovskii V.Yu., A Method for Analytic Computation of Transition Function Coefficients in Multidimensional Systems, Dokl. Akad. Nauk USSR, 1986, vol. 290, no. 3, pp. 557–559.MathSciNetGoogle Scholar
  40. 40.
    Bellert, S. and Woźniacki, H., The Analysis and Synthesis of Electrical Systems by Means of the Method of Structural Numbers, Warszawa: WNT, 1968. Translated under the title Analiz and sintez elektricheskikh tsepei metodom strukturnykh chisel, Moscow: Mir, 1972.Google Scholar
  41. 41.
    Shatikhin, L.G., Strukturnye matritsy i ikh primenenie dlya issledovaniya sistem (Structural Matrices and Their Applications for Systems Research), Moscow: Mashinostroenie, 1974.Google Scholar
  42. 42.
    Kron, G., Diakoptics, London: Macdonald, 1963. Translated under the title Issledovanie slozhnykh sistem po chastyam. Diakoptika, Moscow: Nauka, 1972.Google Scholar
  43. 43.
    Bodner, V.A., Ryazanov, Yu.A., and Shaimardanov, F.A., Sistemy avtomaticheskogo upravleniya dvigatelyami letatel’nykh apparatov (Automated Control Systems for Engines of Flying Vehicles), Moscow: Mashinostroenie, 1973.Google Scholar
  44. 44.
    Morozovskii, V.T., On Cross-Control for Multiconnected Automated Control Systems, in Teoriya i metody postroeniya sistem mnogosvyaznogo regulirovaniya (Theory and Design Methods for Multiconnected Control Systems), Moscow: Nauka, 1973, pp. 39–52.Google Scholar
  45. 45.
    Yuan, J.S.-C., Structural Instability of a Class of Decoupling Solutions, IEEE Trans. Automat. Control, 1977, vol. 22, no. 5, pp. 843–846.zbMATHCrossRefGoogle Scholar
  46. 46.
    Pukhov, G.E. and Zhuk, K.D., Sintez mnogosvyaznykh sistem upravleniya po metodu obratnykh operatorov (Multiconnected Control Systems Design with the Method of Inverse Operators), Kiev: Naukova Dumka, 1966.Google Scholar
  47. 47.
    Petrov, Yu.P., Synthesis of Optimal Linear Systems under Implementability Constraints, Vestn. Mosk. Gos. Uni., 1978, no. 13, pp. 97–102.Google Scholar
  48. 48.
    Petrov, B.N., Babak, S.F., Il’yasov, B.G., and Yusupov, I.Yu., On the Structures of Linear Stationary Systems, Dokl. Akad. Nauk USSR, 1980, vol. 250, no. 1, pp. 55–58.MathSciNetGoogle Scholar
  49. 49.
    Petrov, B.N., Il’yasov, B.G., and Kabal’nov, Yu.S., On the Synthesis of One Class of Automated Control Systems, Dokl. Akad. Nauk USSR, 1979, vol. 228, no. 3, pp. 542–545.MathSciNetGoogle Scholar
  50. 50.
    Vasil’ev, V.I. and Shaimardanov, F.A., Sintez mnogosvyaznykh avtomaticheskikh sistem metodom poryadkovogo otobrazheniya (Multiconnected Automated Systems Design with the Method of Ordinal Mapping), Moscow: Nauka, 1983.Google Scholar
  51. 51.
    Vasil’ev, V.I., Gusev, Yu.M., Efanov, V.N., Krymskii, V.G., et al., Mnogourovnevoe upravlenie dinamicheskimi ob”ektami (Multilevel Control of Dynamical Objects), Moscow: Nauka, 1987.Google Scholar
  52. 52.
    Osnovy teorii mnogosvyaznykh sistem avtomaticheskogo upravleniya letatel’nymi apparatami (Fundamentals of the Theory of Multiconnected Automated Control Systems for Flying Vehicles. Textbook), Krasil’shchikov, M.N., Ed., Moscow: Mosk. Aviats. Inst., 1995.Google Scholar
  53. 53.
    Il’yasov, B.G., Munasypov, R.A., and Munasypova, E.S., Structural Design for Complex Dynamical Systems with the Method of Functional Structural Numbers, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 1997, no. 3, pp. 3–11.Google Scholar
  54. 54.
    Intellektual’nye sistemy upravleniya i kontrolya gazoturbinnykh dvigatelei (Intelligent Control and Testing Systems for Gas Turbine Engines), Vasil’ev, S.N., Ed., Moscow: Mashinostroenie, 2008.Google Scholar
  55. 55.
    Galushkin, A.I., Fundamentals of Neural Control, Neirokomp’yutery: Razrabotka, Primenenie, Moscow: IPRZhR, 2002, no. 9, 10, pp. 87–106.Google Scholar
  56. 56.
    Vasil’ev, V.I. and Panteleev, S.V., Neural Control-a New Field in Control Theory for Complex Systems, Neirokomp’yutery: Razrabotka, Primenenie, Moscow: IPRZhR, 2005, no. 5, pp. 33–45.Google Scholar
  57. 57.
    Narendra, K.S. and Parthasarathy, R., Identification and Control of Dynamical Systems Using Neural Networks, IEEE Trans. Neural Networks, 1990, vol. 1, pp. 4–27.CrossRefGoogle Scholar
  58. 58.
    Narendra, K.S., Neural Networks for Control. Theory and Practice, Proc. IEEE, 1996, vol. 84, no. 10, pp. 1385–1405.CrossRefGoogle Scholar
  59. 59.
    Neirokomp’yutery v aviatsii (samolety) (Neurocomputers in Aviation (Aircraft)), Vasil’ev, V.I., Il’yasov, B.G., and Kusimov, S.T., Eds., (Neurocomputers and Their Applications), Moscow: IPRZhR, 2004, book 14.Google Scholar
  60. 60.
    Vasil’ev, V.I. and Il’yasov, B.G., Intellektual’nye sistemy upravleniya. Teoriya i praktika (Intelligent Control Systems. Theory and Practice), Moscow: Radiotekhnika, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. I. Vasil’ev
    • 1
  • B. G. Ilyasov
    • 1
  • R. A. Munasypov
    • 1
  1. 1.Ufa State Aviation Technical UniversityUfaRussia

Personalised recommendations