Advertisement

Automation and Remote Control

, Volume 74, Issue 3, pp 456–470 | Cite as

A systems approach to studying multiconnected automated control systems based on frequency methods

  • B. G. Il’yasov
  • G. A. Saitova
Topical Issue

Abstract

We analyze the development of frequency methods of studying multiconnected control systems in the Ufa scientific school of control theory. They are based on the description method for multiconnected automated control systems for complex dynamical systems via individual characteristics of their subsystems and characteristics of the multidimensional connecting elements between them proposed by academician B.N. Petrov and his pupils.

Keywords

Remote Control Fuzzy Controller Periodic Motion Automate Control System Frequency Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krasovskii, A.A., Two-Channel Automatic Regulation Systems with Antisymmetric Cross Connections, Autom. Remote Control, 1957, vol. 18, no. 2, pp. 139–150.Google Scholar
  2. 2.
    Meerov, M.V., Sistemy mnogosvyaznogo regulirovaniya (Multiconnected Control Systems), Moscow: Nauka, 1965.Google Scholar
  3. 3.
    Morozovskii, V.G., Mnogosvyaznye sistemy avtomaticheskogo regulirovaniya (Multiconnected Automated Control Systems), Moscow: Energiya, 1970.Google Scholar
  4. 4.
    Chinaev, P.I., Metody analiza i sinteza mnogomernykh avtomaticheskikh sistem (Analysis and Synthesis of Multidimensional Automated Systems), Kiev: Tekhnika, 1969.Google Scholar
  5. 5.
    Bodner, V.A., Sistemy upravleniya letatel’nymi apparatami (Control Systems for Flying Vehicles), Moscow: Mashinostroenie, 1973.Google Scholar
  6. 6.
    Yanushevskii, R.T., Teoriya lineinykh optimal’nykh mnogosvyaznykh sistem upravleniya (Theory of Linear Optimal Multiconnected Control Systems), Moscow: Nauka, 1973.Google Scholar
  7. 7.
    Katkovnik, V.Ya. and Poluektov, R.A., Mnogomernye diskretnye sistemy upravleniya (Multidimensional Discrete Control Systems), Moscow: Nauka, 1966.Google Scholar
  8. 8.
    Sobolev, O.S., Metody issledovaniya lineinykh mnogosvyaznykh sistem (Methods for Studying Linear Multiconnected Systems), Moscow: Energoatomizdat, 1985.Google Scholar
  9. 9.
    Baranchuk, E.I., Vzaimosvyazannye i mnogokonturnye reguliruemye sistemy (Interconnected and Multicircuit Controlled Systems), Leningrad: Energiya, 1968.Google Scholar
  10. 10.
    Boksenbom, A. and Hood, R., General Algebraic Method Applied to Control Analysis of Complex Engine Types, NASA, 1950, Tech. Rept. 980.Google Scholar
  11. 11.
    Mesarovic, M.D., The Control of Multivariable Systems, New York: Willey, 1960.Google Scholar
  12. 12.
    Kavanagh, R.J., The Application of Matrix Methods to Multivariable Control Systems, J. Franklin Inst., 1957, vol. 262(9), pp. 349–367.MathSciNetGoogle Scholar
  13. 13.
    Bohn, E.V., Design and Synthesis Methods for a Class of Multivariable Feedback Control Systems Based on Single Variable Methods, Trans. AIEE, 1962, vol. 81, no. 2, pp. 109–115.Google Scholar
  14. 14.
    Rosenbrock, H.H., State-Space and Multivariable Theory, London: Nelson, 1970.zbMATHGoogle Scholar
  15. 15.
    Kalman, R.E., Falb, P.L., and Arbib, M.A., Topics in Mathematical System Theory, New York: McGraw-Hill, 1969. Translated under the title Ocherki po matematicheskoi teorii sistem, Moscow: Mir, 1971.zbMATHGoogle Scholar
  16. 16.
    Wonham, W.M., Linear Multivariable Control: A Geometric Approach, New York: Springer-Verlag, 1979. Translated under the title Lineinye mnogomernye sistemy upravleniya. Geometricheskii podkhod, Moscow: Nauka, 1980.zbMATHCrossRefGoogle Scholar
  17. 17.
    MacFarlane, A.G.J., Multivariable Control System Design Techniques: A Guided Tour, Proc. IEEE, 1970, vol. 117, no. 5, pp. 1039–1047.MathSciNetGoogle Scholar
  18. 18.
    Polyak, B.T. and Tsypkin, Ya.Z., Stability and Robust Stability of Uniform Systems, Autom. Remote Control, 1996, vol. 57, no. 11, part 1, pp. 1606–1617.MathSciNetzbMATHGoogle Scholar
  19. 19.
    Gasparyan, O.N., Linear and Nonlinear Multivariable Feedback Control: A Classical Approach, New York: Wiley, 2008.CrossRefGoogle Scholar
  20. 20.
    Garcia, D., Karimi, A., and Longchamp, R., PID Controller Design for Multivariable System Using Gershgorin Bands, IFAC World Congress, Prague, July 2005.Google Scholar
  21. 21.
    Wang, Q.-G. and Nie, Z.-Y., PID Control for MIMO Processes, in PID Control in the Third Millennium, Advances in Industrial Control, London: Springer, 2012, pp. 177–204.CrossRefGoogle Scholar
  22. 22.
    Nelineinye sistemy. Chastotnye i matrichnye neravenstva (Nonlinear Systems. Frequency and Matrix Inequalities), Gelig, A.Kh., Leonov, G.A., and Fradkov, A.L., Eds., Moscow: Fizmatlit, 2008.Google Scholar
  23. 23.
    Petrov, B.N., Cherkasov, B.A., Il’yasov, B.G., and Kulikov, G.G., Frequential Method of Analysis and Synthesis for Multidimensional Automated Control Systems, Dokl. Akad. Nauk USSR, 1979, vol. 247, no. 2, pp. 304–307.MathSciNetGoogle Scholar
  24. 24.
    Designing Automated Control Systems for Gas Turbine Engines (Normal and Emergency Modes), Petrov, B.N., Ed., Moscow: Mashinostroenie, 1981.Google Scholar
  25. 25.
    Il’yasov, B.G., Kabal’nov, Yu.S., and Kolushov, V.V., On Constructing Stability Regions for MACS in the Phase Response Plane of Its Separate Subsystems, Tekh. Kibern., 1990, no. 1, pp. 18–25.Google Scholar
  26. 26.
    Il’yasov, B.G. and Kabal’nov, Yu.S., An Investigation into the Stability of Single-Type Multiply Connected Automatic Control Systems with Holonomic Ties between Subsystems, Autom. Remote Control, 1995, vol. 56, no. 8, part 1, pp. 1120–1125.MathSciNetzbMATHGoogle Scholar
  27. 27.
    Il’yasov, B.G., Saitova, G.A., and Khalikova, E.A., Analyzing Stability Reserves in Uniform Multiconnected Control Systems, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2009, no. 4, pp. 4–12.Google Scholar
  28. 28.
    Il’yasov, B.G., Denisova, E.V., and Saitova, G.A., Analyzing Periodic Motions in Nonlinear Uniform Multiconnected Automated Control Systems, Mekhatronika, 2001, no. 7, pp. 29–34.Google Scholar
  29. 29.
    Il’yasov, B.G., Munasypov, R.A., Saitova, G.A., et al., Analyzing Periodic Motions in Multiconnected Systems with Fuzzy Controllers in Separate Subsystems, Mekhatronika, Avtomatiz., Upravlen., 2004, no. 8, pp. 24–29.Google Scholar
  30. 30.
    Il’yasov, B.G., Saitova, G.A., and Nazapov, A.Sh., On One Approach to Constructing Adaptive Multiconnected Automated Control Systems for Complex Dynamical Objects, Mekhatronika, Avtomatiz., Upravlen., 2010, no. 8, pp. 13–20.Google Scholar
  31. 31.
    Il’yasov, B.G., Saitova, G.A., and Nazapov, A.Sh., A Reconfiguration Algorithm for the Structure of a Multiconnected Automated Control System from the Stability Condition with Frequency-Based Methods, Vest. UGATU, 2012, vol. 16, no. 3(48), pp. 3–10.Google Scholar
  32. 32.
    Babak, S.F., Vasil’ev, V.I., Il’yasov, B.G., et al., Osnovy teorii mnogosvyaznykh sistem avtomaticheskogo upravleniya letatel’nymi apparatami (Fundamentals of the Theory of Multiconnected Automated Control Systems for Flying Vehicles. Textbook), Krasil’shchikov, M.N., Ed., Moscow: Mosk. Aviats. Inst., 1995.Google Scholar
  33. 33.
    Kusimov, S.T., Il’yasov, B.G., Vasil’ev, V.I., et al., Upravlenie dinamicheskimi sistemami v usloviyakh neopredelennosti (Dynamical Systems Control under Uncertainty), Moscow: Nauka, 1998.Google Scholar
  34. 34.
    Intellektual’nye sistemy upravleniya (Intelligent Control Systems), Vasil’ev, S.N., Ed., Moscow: Mashinostroenie, 2010.Google Scholar
  35. 35.
    Kusimov, S.T., Il’yasov, B.G., Vasil’ev, V.I., et al., Problemy proektirovaniya i razvitiya sistem avtomaticheskogo upravleniya i kontrolya GTD (Problems of Design and Development of Automated Control and Testing Systems for GTD), Moscow: Mashinostroenie, 1999.Google Scholar
  36. 36.
    Intellektual’nye sistemy upravleniya i kontrolya gazoturbinnykh dvigatelei (Intelligent Control and Testing Systems for Gas Turbine Engines), Vasil’ev, S.N., Ed., Moscow: Mashinostroenie, 2008.Google Scholar
  37. 37.
    Optimizatsiya mnogomernykh sistem upravleniya gazoturbinnykh dvigatelei letatel’nykh apparatov (Optimizing Multidimensional Control Systems for Gas Turbine Engines of Flying Vehicles), Shevyakov, A.A. and Mart’yanova, T.S., Eds., Moscow: Mashinostroenie, 1989.Google Scholar
  38. 38.
    Vasil’ev, V.I. and Il’yasov, B.G., Intellektual’nye sistemy upravleniya. Teoriya i praktika (Intelligent Control Systems. Theory and Practice. Textbook), Moscow: Radiotekhnika, 2009.Google Scholar
  39. 39.
    Il’yasov, B.G., Saitova, G.A., and Khalikova, E.A., Analyzing the Stability of Heterogeneous Multiconnected Automated Control Systems, in Mekhatronika, avtomatizatsiya i upravlenie (Proc. Intl. Sci.-Tech. Conf.), Taganrog: TTI YuFU Press, 2007, pp. 76–81.Google Scholar
  40. 40.
    Besekerskii, V.A. and Popov, E.P., Teoriya sistem avtomaticheskogo upravleniya (Theory of Automated Control Systems), St. Petersburg: Professiya, 2007.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • B. G. Il’yasov
    • 1
  • G. A. Saitova
    • 1
  1. 1.FGBRO Ufa State Aviation Technical UniversityUfaRussia

Personalised recommendations