Advertisement

Automation and Remote Control

, Volume 74, Issue 3, pp 358–371 | Cite as

Shaping filter design with a given mean anisotropy of output signals

  • A. Yu. Kustov
  • A. P. Kurdyukov
Topical Issue

Abstract

The problem of designing a linear filter generating random output signals with a given level of mean anisotropy is posed and solved. The feasibility of deriving an analytic solution to the problem is analyzed under specific conditions.

Keywords

Anisotropy Remote Control Random Vector Lyapunov Equation Anisotropic Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Solodov, A.V., Teoriya informatsii i ee primenenie k zadacham avtomaticheskogo upravleniya i kontrolya (Information Theory and Its Application to Automatic Control Problems), Moscow: Nauka, 1967.Google Scholar
  2. 2.
    Fel’dbaum, A.A., Osnovy teorii optimal’nykh avtomaticheskikh sistem (Fundamentals of the Theory of Optimal Automatic Systems), Moscow: Nauka, 1966.Google Scholar
  3. 3.
    Petrov, B.N., Ulanov, G.M., Ul’yanov, S.V., and Khazen, E.M., Informatsionno-semanticheskie problemy v protsessakh upravleniya i organizatsii (Information-semantic Problems in the Processes of Control and Organization), Moscow: Nauka, 1977.Google Scholar
  4. 4.
    Andrievsky, B.R., Matveev, A.S., and Fradkov, A.L., Control and Estimation under Information Constraints: Toward a Unified Theory of Control, Computation and Communication, Autom. Remote Control, 2010, vol. 71, no. 4, pp. 572–633.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Vladimirov, I.G., Kurdyukov, A.P., and Semyonov, A.V., Anisotropy of Signals and Entropy of Linear Stationary Systems, Dokl. Ross. Akad. Nauk, 1995, vol. 342, no. 5, pp. 583–585.Google Scholar
  6. 6.
    Vladimirov, I.G., Kurdyukov, A.P., and Semyonov, A.V., Stochastic Problem of H -optimization, Dokl. Ross. Akad. Nauk, 1995, vol. 343, no. 5, pp. 607–609.Google Scholar
  7. 7.
    Vladimirov, I.G., Kurdjukov, A.P., and Semyonov, A.V., On Computing the Anisotropic Norm of Linear Discrete-time-invariant Systems, Proc. 13th IFAC World Congress, San-Francisco, 1996, pp. 179–184.Google Scholar
  8. 8.
    Vladimirov, I.G., Kurdjukov, A.P., and Semyonov, A.V., State-space Solution to Anisotropybased Stochastic H -optimization Problem, Proc. 13th IFAC World Congress, San-Francisco, 1996, pp. 427–432.Google Scholar
  9. 9.
    Vladimirov, I.G., Kurdyukov, A.P., and Semyonov, A.V., Asymptotics of Anisotropic Norms of Stationary Linear Systems, Autom. Remote Control, 1999, vol. 60, no. 3, part 1, pp. 359–366.Google Scholar
  10. 10.
    Semyonov, A.V., Vladimirov, I.G., and Kurdjukov, A.P., Stochastic Approach to H -optimization, Proc. 33rd IEEE Conf. on Decision and Control, Florida, 1994, pp. 2249–2250.Google Scholar
  11. 11.
    Vladimirov, I.G., Diamond, P., and Kloeden, P., Anisotropy-based Robust Performance Analysis of Finite Horizon Linear Discrete Time Varying Systems, Autom. Remote Control, 2006, vol. 67, no. 8, pp. 1265–1282.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Diamond, P., Vladimirov, I.G., Kurdyukov, A.P., and Semyonov, A.V., Anisotropy-based Performance Analysis of Linear Discrete Time Invariant Control Systems, Int. J. Control, 2001, vol. 74, no. 1, 28(42).Google Scholar
  13. 13.
    Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Upper Saddle River: Prentice Hall, 1996.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. Yu. Kustov
    • 1
  • A. P. Kurdyukov
    • 1
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations