Advertisement

Automation and Remote Control

, Volume 73, Issue 6, pp 1005–1015 | Cite as

Robust stability of systems of linear differential equations with periodic impulsive influence

  • V. I. Slyn’ko
  • V. S. Denisenko
Robust and Adaptive Systems

Abstract

We give sufficient robust stability conditions for matrix polytopes of linear systems with impulsive influence. The methods of our study are based on logarithmic matrix measure theory and linear operator theory in Banach spaces. Our results reduce the robust stability problem to the feasibility problem for a system of linear matrix inequalities in the class of positive definite matrices.

Keywords

Remote Control Linear Matrix Inequality Matrix Norm Matrix Measure Feasibility Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martynyuk-Chernienko, Yu.A., Netochnye dinamicheskie sistemy: ustoichivost’ i upravlenie dvizheniem (Inexact Dynamical Systems: Stability and Motion Control), Kiev: Feniks, 2009.Google Scholar
  2. 2.
    Gusev, Yu.M., Efanov, V.N., Krymskii, V.G., and Rutkovskii, V.Yu., Analysis and Synthesis of Linear Interval Dynamical Systems (State of the Problem). I, Tekh. Kibern., 1991, no. 1, pp. 3–23.Google Scholar
  3. 3.
    Gusev, Yu.M., Efanov, V.N., Krymskii, V.G., and Rutkovskii, V.Yu., Analysis and Synthesis of Linear Interval Dynamical Systems (State of the Problem). II, Tekh. Kibern., 1991, no. 2, pp. 3–30.Google Scholar
  4. 4.
    Samoilenko, A.M. and Perestyuk, N.A., Differentsial’nye uravneniya s impul’snym vozdeistviem (Differential Equations with Impulsive Influence), Kiev: Vishcha Shkola, 1987.Google Scholar
  5. 5.
    Dvirnyi, A.I., On Estimating the Robustness Boundary for a Linear System with Impulsive Influence, Dopovidi Nat. Akad. Nauk Ukraini, 2003, no. 9, pp. 34–39.Google Scholar
  6. 6.
    Dvirnyi, A.I., Global Stability of Solutions in One Class of Nonlinear Differential Systems with Impulsive Influence in a Pseudolinear Form, Zbirnik Prats’ Institutu Mat. Nat. Akad. Nauk Ukraini, 2010, vol. 7, no. 3, pp. 108–119.Google Scholar
  7. 7.
    Perestyuk, M.O. and Chernikova, O.S., On Certain Aspects of the Theory of Differential Equations with Impulsive Influence, Ukr. Mat. Zh., 2008, vol. 60, no. 1, pp. 81–92.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Perestyuk, M.O. and Chernikova, O.S., On Stability of Invariant Sets of Discontinuous Dynamical Systems, Ukr. Mat. Zh., 2001, vol. 53, no. 1, pp. 78–87.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Perestyuk, N.A. and Chernikova, O.S., On Stability of Solutions of Systems of Differential Equations with Impulsive Inference, Ukr. Mat. Zh., 1984, vol. 36, no. 2, pp. 190–195.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Martynyuk, A.A. and Slyn’ko, V.I., Stability of a Nonlinear Impulsive System, Int. Appl. Mech., 2004, vol. 40, no. 2, pp. 231–239.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dvirnyi, A.I. and Slyn’ko, V.I., Stability of Solutions to Impulsive Differential Equations in Critical Cases, Sib. Mat. Zh., 2011, vol. 52, no. 1, pp. 54–62.MathSciNetGoogle Scholar
  12. 12.
    Gladilina, R.I. and Ignat’ev, A.O., On Necessary and Sufficient Conditions of Asymptotic Stability in Impulsive Systems, Ukr. Mat. Zh., 2003, vol. 55, no. 8, pp. 1035–1043.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gladilina, R.I. and Ignat’ev, A.O., On Necessary and Sufficient Stability Conditions for Invariant Sets of Nonlinear Impulsive Systems, Prikl. Mekh., 2008, vol. 44, no. 2, pp. 132–142.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Dvirnyi, A.I. and Slyn’ko, V.I., On Stability of Linear Impulsive Systems with respect to a Cone, Dopovidi Nat. Akad. Nauk Ukraini, 2004, no. 4, pp. 42–48.Google Scholar
  15. 15.
    Denisenko, V.S. and Slyn’ko, V.I., Stability of Nonstationary Takagi-Sugeno Models with Impulsive Inference, Zbirnik Prats’ Institutu Mat. Nat. Akad. Nauk Ukraini, 2010, vol. 7, no. 3, pp. 120–132.Google Scholar
  16. 16.
    Dvirnyi, A.I. and Slyn’ko, V.I., Global Stability Conditions for Solutions of Nonstationary Differential Equations with Impulsive Influence in a Pseudolinear Form, Ukr. Mat. Visnik, 2011, vol. 8, no. 2, pp. 182–202.MathSciNetGoogle Scholar
  17. 17.
    Krasnosel’skii, M.A., Lifshits, E.A., and Sobolev, A.V., Pozitivnye lineinye sistemy (Positive Linear Systems), Moscow: Nauka, 1985.Google Scholar
  18. 18.
    Lakshmikantam, V., Lila, S., and Martynyuk, A.A., Ustoichivost’ dvizheniya: metod sravneniya (Motion Stability: The Comparison Method), Kiev: Naukova Dumka, 1991.Google Scholar
  19. 19.
    Daletskii, Yu.L. and Krein, M.G., Ustoichivost’ reshenii differentsial’nykh uravnenii v banakhovom prostranstve (Stability of Solutions of Differential Equations in a Banach Space), Moscow: Nauka, 1970.Google Scholar
  20. 20.
    Gruiich, L.T., Martynyuk, A.A., and Ribbens-Pavella, M., Ustoichivost’ krupnomasshtabnykh sistem pri strukturnykh i singulyarnykh vozmushcheniyakh (Stability of Large-Scale Systems under Structural and Singular Perturbances), Kiev: Naukova Dumka, 1984.Google Scholar
  21. 21.
    Slyn’ko, V.I., Linear Matrix Inequalities and Stability of Impulsive Systems Motion, Dopovidi Nat. Akad. Nauk Ukraini, 2008, no. 4, pp. 68–71.Google Scholar
  22. 22.
    Denisenko, V.S. and Slyn’ko, V.I., Impulsive Stabilization of Mechanical Systems in Takagi-Sugeno Models, Int. Appl. Mech., 2009, vol. 45, no. 10, pp. 1127–1140.CrossRefGoogle Scholar
  23. 23.
    Denisenko, V.S., Stability of Takagi-Sugeno Fuzzy Impulse Systems: The Method of Linear Matrix Inequalities, Dopovidi Nat. Akad. Nauk Ukraini, 2008, no. 11, pp. 66–73.Google Scholar
  24. 24.
    Šiljak, D.D. and Stipanovic, D.M., Robust Stabilization of Nonlinear Systems: The LMI Approach, Math. Probl. Eng., 2000, vol. 6, pp. 461–493.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. I. Slyn’ko
    • 1
  • V. S. Denisenko
    • 2
  1. 1.Timoshenko Institute of MechanicsNational Academy of SciencesKievUkraine
  2. 2.Khmelnitsky Cherkassy National UniversityCherkassyUkraine

Personalised recommendations