Advertisement

Automation and Remote Control

, Volume 73, Issue 6, pp 992–1004 | Cite as

Optimization of the law of moving object evasion from detection under constraints

  • A. A. Galyaev
  • E. P. Maslov
Robust and Adaptive Systems

Abstract

Consideration was given to optimization of the laws of moving object evasion from detection under the coordinate and phase constraints.

Keywords

Remote Control Optimal Trajectory Polar Coordinate System Threat Environment Real Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zabarankin, M., Uryasev, S., and Pardalos, P., Optimal Risk Path Algorithms, in Cooperative Control and Opimizaton. Ch. 1, Murphey, R. and Pardalos, P., Eds., Dordrecht: Kluwer, 2002, pp. 271–303.Google Scholar
  2. 2.
    Meguerdichian, S., Koushanfar, F., Qu, G., and Potkonjak, M., Exposure in Wireless Ad-hoc Sensor Networks, in Proc. 7 Int. Conf. MobiCom’01, 2001, pp. 139–150.Google Scholar
  3. 3.
    Veltri, G., Huang, Q., Qu, G., and Potkonjak, M., Minimal and Maximal Exposure Path Algorithms for Wireless Embedded Sensor Networks, in Proc. Int. Conf. Sensor Syst. SenSys’03, 2003, pp. 242–249.Google Scholar
  4. 4.
    Pachter, L.S. and Pachter, M., Optimal Paths for Avoiding a Radiating Source, in Proc. 40 IEEE Conf. Des. Control, 2001, pp. 3581–3686.Google Scholar
  5. 5.
    Galyaev, A.A., Maslov, E.P., and Rubinovich, E.Ya., On a Problem of Object Motion Control in the Threat Environment, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2009, no. 3, pp. 130–136.Google Scholar
  6. 6.
    Galyaev, A.A. and Maslov, E.P., Optimization of the Moving Object Evasion from Detection, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2010, no. 4, pp. 52–62.Google Scholar
  7. 7.
    Sysoev, L.P., Criteria for Probability of Detection on the Trajectory in the Problem of Object Motion Control in the Threat Environment, Probl. Upravlen., 2010, no. 5, pp. 73–79.Google Scholar
  8. 8.
    Abramyants, T.G., Maslov, E.P., and Yakhno, V.P., Evasion of the Moving Object from Detection by a Group of Observers, Probl. Upravlen., 2010, no. 5, pp. 73–79.Google Scholar
  9. 9.
    Abramyants, T.G., Maslov, E.P., Rud’ko, I.M., and Yakhno, V.P., Evasion of the Moving Object from Detection by a Group of Observers under Small Signal/Noise Ratios, Inf.-Upravl. Sist., 2011, no. 2, pp. 2–7.Google Scholar
  10. 10.
    Washburn, A.R., On Patrolling a Channel, Naval Research Logistic, 1982, vol. 29, no. 4, pp. 605–615.Google Scholar
  11. 11.
    Washburn, A.R., Barrier Games, Military Oper. Res., 2010, vol. 15, no. 3, pp. 31–41.CrossRefGoogle Scholar
  12. 12.
    Galyaev, A.A., On the Detection Functional in Motion of an Object in a Threat Environment, Autom. Remote Control, 2010, vol. 71, no. 4, pp. 634–639.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bryson, A.E. and Ho, Y.C., Applied Optimal Control, Waltham: Blaisdel, 1969. Translated under the title Prikladnaya teoriya optimal’nogo upravleniya, Moscow: Mir, 1972.Google Scholar
  14. 14.
    Fikhtengol’ts, G.M., Kurs differentsial’nogo i integral’nogo ischisleniya (Course of Differential and Integral Calculus), Moscow: Nauka, 1969, vol. 1.Google Scholar
  15. 15.
    El’sgol’ts, L.E., Differentsial’nye uravneniya i variatsionnoe ischislenie (Differential Equations and Variational Calculus), Moscow: URSS, 2002.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Galyaev
    • 1
  • E. P. Maslov
    • 1
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations