Advertisement

Automation and Remote Control

, Volume 73, Issue 6, pp 976–991 | Cite as

Applying random stream theory to the group target detection problem

  • M. E. Shaikin
Stochastic Systems, Queueing Systems
  • 51 Downloads

Abstract

The detection problem for a group of moving targets is a generalization of the classical detection problem for a single still target. Synthesis methods for joint detection and phase coordinate measurement for objects in the group are being developed in the theory of random streams of events. In this work, we propose a Poisson approximation for a Bernoullian stream of signals generated by a group target and observed in noises for small signal/noise ratios. Using this approximation, we can significantly simplify optimal detection and parameter estimation for a group target which are hard to implement exactly. Developing suboptimal algorithms is an important problem for a number of technical applications, including, in particular, radioand hydrolocation.

Keywords

Remote Control Generate Functional Detection Problem Poisson Approximation Posterior Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuznetsov, P.I. and Stratonovich, R.L., On the Mathematical Theory of Correlated Random Points, Izv. Akad. Nauk SSSR, Ser. Mat., 1956, vol. 20, no. 2, pp. 167–168.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Nilsson, N.J., On the Optimum Range Resolution of Radar Signals in Noise, IRE Trans. Inf. Theory, 1961, vol. IT-7, no. 4, pp. 245–253.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bol’shakov, I.A., Statisticheskie problemy vydeleniya potoka signalov iz shuma (Statistical Problems of Signal Stream Denoising), Moscow: Sovetskoe Radio, 1969.Google Scholar
  4. 4.
    Bakut, P.A., Zhulina, Yu.V., and Ivanchuk, N.A., Obnaruzhenie dvizhushchikhsya ob”ektov (Detection of Moving Objects), Moscow: Sovetskoe Radio, 1969.Google Scholar
  5. 5.
    Shiryaev, A.N., Statisticheskii posledovatel’nyi analiz (Statistical Sequential Analysis), Moscow: Nauka, 1969.Google Scholar
  6. 6.
    Sysoev, L.P., The Detection Probability Criterion on a Trajectory in the Control Problem for an Object in a Conflicting Environment, Probl. Upravlen., 2010, no. 6, pp. 64–70.Google Scholar
  7. 7.
    Lehmann, E.L., Testing Statistical Hypotheses, New York: Wiley, 1959. Translated under the title Proverka statisticheskikh gipotez, Moscow: Nauka, 1964.zbMATHGoogle Scholar
  8. 8.
    Ivankin, E.F., Informatsionnye sistemy s aposteriornoi obrabotkoi rezul’tatov nablyudenii (Information Systems with Posterior Processing of Observation Results), Moscow: Goryachaya Liniya-Telekom, 2008.Google Scholar
  9. 9.
    Radzievskii, V.G., Sirota, A.A., and Borisov, Yu.A., Estimating the Coordinates of Measurement Sources in Multipositional Radiotechnical Systems under a Mixed Input Stream of Signal and Noise, Radiotekh., 1996, no. 6, pp. 43–49.Google Scholar
  10. 10.
    Dudnik, P.I., Kondratenkov, G.S., et al., Aviatsionnye radiolokatsionnye kompleksy i sistemy (Aviation Radiolocation Complexes and Systems), Moscow: VVIA, 2006.Google Scholar
  11. 11.
    Hwang, H.-K. and Zacharovas, V., Uniform Asymptotics of Poisson Approximation to the Poisson-Binomial Distribution, Theor. Veroyat. Primenen., 2010, vol. 55, no. 2, pp. 305–334.MathSciNetGoogle Scholar
  12. 12.
    Feller, W., An Introduction to Probability Theory and Its Applications, New York: Wiley, 1957. Translated under the title Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Moscow: Mir, 1964.zbMATHGoogle Scholar
  13. 13.
    Stanley, R.P., Enumerative Combinatorics, Monterey: Wadsworth & Brooks/Cole, 1986. Translation under the title Perechislitel’naya kombinatorika, Moscow: Mir, 1990.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. E. Shaikin
    • 1
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations