Automation and Remote Control

, Volume 73, Issue 6, pp 949–961 | Cite as

Maximizing a state convex lagrange functional in optimal control

  • A. S. Strekalovsky
Nonlinear Systems


We consider the maximization problem for an integral functional with a state-convex integrand function along a standard control system. We show necessary and sufficient global optimality conditions related to the Pontryagin’s maximum principle. We study the properties of these conditions and their relations with optimal control theory. We also illustrate the efficiency of the resulting conditions on specific examples.


Remote Control Optimal Control Problem Conjugate System Nonlinear Control System State Convex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., et al., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1983.zbMATHGoogle Scholar
  2. 2.
    Chernous’ko, F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem (Estimating Phase States in Dynamical Systems), Moscow: Nauka, 1988.zbMATHGoogle Scholar
  3. 3.
    Gabasov, R.F. and Kirillova, F.M., Optimizatsiya lineinykh sistem (Optimizing Linear Systems), Minsk: Belarus. Gos. Univ., 1973.Google Scholar
  4. 4.
    Fedorenko, R.P., Priblizhennoe reshenie zadach optimal’nogo upravleniya (Approximate Solutions for Optimal Control Problems), Moscow: Nauka, 1978.zbMATHGoogle Scholar
  5. 5.
    Vasil’ev, F.P., Metody optimizatsii (Optimization Methods), Moscow: Faktorial-Press, 2002.Google Scholar
  6. 6.
    Srochko, V.A., Iteratsionnye metody resheniya zadach optimal’nogo upravleniya (Iterative Methods for Optimal Control Problems), Moscow: Fizmatlit, 2000.Google Scholar
  7. 7.
    Strekalovsky, A.S., Elementy nevypukloi optimizatsii (Elements of Nonconvex Optimization), Novosibirsk: Nauka, 2003.Google Scholar
  8. 8.
    Strekalovsky, A.S and Yanulevich, M.V., Global Search in an Optimal Control Problem with Objective Terminal Functional Represented as a Difference of Two Convex Functions, Zh. Vychisl. Mat. Mat. Fiz., 2008, vol. 48, no. 7, pp. 1187–1201.MathSciNetGoogle Scholar
  9. 9.
    Strekalovsky, A.S., Optimal Control Problems with Terminal Functionals Represented as a Difference of Two Convex Functions, Zh. Vychisl. Mat. Mat. Fiz., 2007, vol. 47, no. 11, pp. 1865–1879.MathSciNetGoogle Scholar
  10. 10.
    Strekalovsky, A.S. and Sharankhaeva, E.V., Global Search in a Nonconvex Optimal Control Problem, Zh. Vychisl. Mat. Mat. Fiz., 2005, vol. 45, no. 10, pp. 1785–1800.MathSciNetGoogle Scholar
  11. 11.
    Strekalovsky, A.S. and Vasiliev, I.L., On Global Search for Non-Convex Optimal Control Problems, in Developments in Global Optimization. Nonconvex Optimization and Its Applications, Dordrecht: Kluwer, 1997, pp. 121–133.Google Scholar
  12. 12.
    Strekalovsky, A.S., On Global Maximum of a Convex Terminal Functional in Optimal Control Problems, J. Global Optim. 1995, no. 7, pp. 75–91.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. S. Strekalovsky
    • 1
  1. 1.Institute of System Dynamics and Control Theory, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations