Skip to main content
Log in

Control reconstruction in hyperbolic systems

  • Applications of Mathematical Programming
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider an inverse dynamics problem which is to reconstruct a priori unknown distributed controls in a hyperbolic system given the results of approximate observations of the movements of this system. To solve this ill-posed problem, we propose to use the Tikhonov’s method with a regularizer containing the sum of mean squared norm and the total variation over the time of an admissible control. Using such a regularizer lets one get, in a number of cases, better results than just approximating the control in question in Lebesgue spaces. In particular, along these lines we can establish pointwise and piecewise uniform convergence for regularized approximations, which opens up new opportunities for numerical reconstruction of the fine structure of the control. We give numerical modeling results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1976.

    Google Scholar 

  2. Krasovskii, N.N., Teoriya upravleniya dvizheniem (Theory of Motion Control), Moscow: Nauka, 1968.

    Google Scholar 

  3. Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differential Games), Moscow: Nauka, 1974.

    MATH  Google Scholar 

  4. Osipov, Yu.S. and Kryazhimskii, A.V., Inverse Problems of Ordinary Differential Equations: Dynamical Solutions, London: Gordon and Breach, 1995.

    Google Scholar 

  5. Osipov, Yu.S., Vasil’ev, F.P., and Potapov, M.M., Osnovy metoda dinamicheskoi regulyarizatsii (Fundamentals of the Dynamic Regularization Method), Moscow: Mosk. Gos. Univ., 1999.

    Google Scholar 

  6. Kurzhanskii, A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti (Control and Observation under Uncertainty), Moscow: Nauka, 1977.

    MATH  Google Scholar 

  7. Chernous’ko, F.L. and Melikyan, A.A., Igrovye zadachi upravleniya i poiska (Game Problems in Control and Search), Moscow: Nauka, 1978.

    MATH  Google Scholar 

  8. Maksimov, V.I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem (Dynamic Input Reconstruction Problems for Infinite-Dimensional Systems), Yekaterinburg: Ross. Akad. Nauk, 2000.

    Google Scholar 

  9. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving Ill-Posed Problems), Moscow: Nauka, 1979.

    MATH  Google Scholar 

  10. Ivanov, V.K., Vasin, V.V., and Tanana, V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya (Theory of Linear Ill-Posed Problems and Its Applications), Moscow: Nauka, 1978.

    Google Scholar 

  11. Lavrent’ev, M.M., Romanov, V.G., and Shishatskii, S.P., Nekorrektnye zadachi matematicheskoi fiziki i analiza (Ill-Posed Problems in Mathematical Physics and Analysis), Moscow: Nauka, 1980.

    Google Scholar 

  12. Ageev, A.L., Regularizing Nonlinear Operator Equations on the Class of Discontinuous Functions, Zh. Vychisl. Mat. Mat. Fiz., 1980, vol. 20, no. 4, pp. 819–836.

    MathSciNet  MATH  Google Scholar 

  13. Vasin, V.V., Regularization and Discrete Approximation of Ill-Posed Problems in the Space of Functions with Bounded Variation, Dokl. Ross. Akad. Nauk, 2001, vol. 376, no. 1, pp. 11–14.

    MathSciNet  Google Scholar 

  14. Vasin, V.V., Stable Approximation of Nonsmooth Solutions for Linear Ill-Posed Problems, Dokl. Ross. Akad. Nauk, 2005, vol. 402, no. 5, pp. 586–589.

    MathSciNet  Google Scholar 

  15. Vasin, V.V., Approximating Nonsmooth Solutions for Linear Ill-Posed Problems, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2006, vol. 12, no. 1, pp. 64–77.

    MathSciNet  Google Scholar 

  16. Vasin, V.V. and Korotkii, M.A., Tikhonov Regularization with Nondifferentiable Stabilizing Functional, J. Inverse and Ill-Posed Problems, 2007, vol. 15, no. 8, pp. 853–865.

    Article  MathSciNet  MATH  Google Scholar 

  17. Leonov, A.S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB (Solving Ill-Posed Inverse Problems. A Survey of Theory, Practical Algorithms, and MATLAB Demonstrations), Moscow: Librokom, 2010.

    Google Scholar 

  18. Tikhonov, A.N., Leonov, A.S., and Yagola, A.G., Nelineinye nekorrektnye zadachi (Nonlinear Ill-Posed Problems), Moscow: Nauka, 1995.

    Google Scholar 

  19. Giusti, E., Minimal Surfaces and Functions of Bounded Variations, Basel: Birkhauser, 1984.

    Google Scholar 

  20. Acar, R. and Vogel, C.R., Analysis of Bounded Variation Penalty Method for Ill-Posed Problems, Inverse Probl., 1994, vol. 10, pp. 1217–1229.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chavent, G. and Kunish, K., Regularization of Linear Least Squares Problems by Total Bounded Variation Control, Optimiz. Calcul. Variation, 1997, vol. 2, pp. 359–376.

    Article  MATH  Google Scholar 

  22. Vogel, C.R., Computation Methods for Inverse Problems, Philadelphia: SIAM, 2002.

    Book  Google Scholar 

  23. Korotkii, M.A., Reconstructing Controls and Parameters with Tikhonov’s Method with Non-Smooth Stabilizers, Izv. Vyssh. Uchebn. Zaved., Mat., 2009, no. 2, pp. 76–82.

  24. Korotkii, M.A., Reconstructing Controls by Static and Dynamic Regularization Methods with Non-Smooth Stabilizers, Prikl. Mat. Mekh., 2009, vol. 73, no. 1, pp. 39–53.

    MathSciNet  Google Scholar 

  25. Korotkii, M.A., Tikhonov’s Regularization Method with Non-Smooth Stabilizers, PhD Dissertation, Yekaterinburg: Inst. of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, 2009.

    Google Scholar 

  26. Korotkii, A.I. and Mikhailova, D.O., Reconstructing Controls in Parabolic Systems with Tikhonov’s Method with Non-Smooth Stabilizers, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2010, vol. 16, no. 4, pp. 211–227.

    Google Scholar 

  27. Korotkii, A.I. and Gribanova, E.I., Reconstructing Controls in Hyperbolic Systems with Tikhonov’s Method with Non-Smooth Stabilizers, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2010, vol. 17, no. 1, pp. 99–108.

    Google Scholar 

  28. Ladyzhenskaya, O.A., Kraevye zadachi matematicheskoi fiziki (Boundary Problems of Mathematical Physics), Moscow: Nauka, 1973.

    Google Scholar 

  29. Ladyzhenskaya, O.A., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa (Linear and Quasilinear Elliptic Type Equations), Moscow: Nauka, 1973.

    Google Scholar 

  30. Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (Elements of the Theory of Functions and Functional Analysis), Moscow: Nauka, 1972.

    Google Scholar 

  31. Vasil’ev, F.P., Metody optimizatsii (Optimization Methods), Moscow: Faktorial, 2002.

    Google Scholar 

  32. Polyak, B.T., Vvedenie v optimizatsiyu (Introduction to optimization), Moscow: Nauka, 1983.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.I. Korotkii, E.I. Gribanova, 2012, published in Avtomatika i Telemekhanika, 2012, No. 3, pp. 64–78.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korotkii, A.I., Gribanova, E.I. Control reconstruction in hyperbolic systems. Autom Remote Control 73, 472–484 (2012). https://doi.org/10.1134/S000511791203006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511791203006X

Keywords

Navigation