Skip to main content
Log in

Adaptive-based methods for information transmission by means of chaotic signal source modulation

  • Large Scale Systems Control
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Three methods for information transmission based on chaotic signal source modulation based on: application of adaptive observers, adaptive identification with the Implicit Adjustable Model, and frequency modulation with the adaptive demodulator are described. Application of the proposed methods for information transmission by means of chaotic Chua generator modulation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrievsky, B.R., Nikiforov, V.O., and Fradkov, A.L., Methods for Control of Periodic and Chaotic Oscillations, Jubilee Conference of RFBR, April 24–26, 2002, Moscow: RFBR, 2002.

    Google Scholar 

  2. Andrievskii, B.R., Nikiforov, V.O., and Fradkov, A.L., Adaptive Observer-based Synchronization of the Nonlinear Nonpassifiable Systems, Autom. Remote Control, 2007, vol. 68, no. 7, pp. 1186–1200.

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrievsky, B.R. and Fradkov, A.L., Izbrannye glavy teorii avtomaticheskogo upravleniya s primerami na yazyke MATLAB (Selected Chapters of the Automatic Control Theory with Examples in MATLAB), St. Petersburg: Nauka, 1999.

    Google Scholar 

  4. Andrievsky, B.R. and Fradkov, A.L., Elementy matematicheskogo modelirovaniya v programmnykh sredakh MATLAB 5 i Scilab (Elements of Mathematical Modeling in the MATLAB 5 and Scilab Software Environments), St. Petersburg: Nauka, 2001.

    Google Scholar 

  5. Andrievskii, B.R. and Fradkov, A.L., Control of Chaos: Methods and Applications. I. Methods, Autom. Remote Control, 2003, vol. 64, no. 5, pp. 673–713.

    Article  MathSciNet  MATH  Google Scholar 

  6. Andrievskii, B.R. and Fradkov, A.L., Control of Chaos: Methods and Applications. II. Applications, Autom. Remote Control, 2004, vol. 65, no. 4, pp. 505–533.

    Article  MathSciNet  MATH  Google Scholar 

  7. Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti (Lectures on the Mathematical Theory of Stability), Moscow: Mosk. Gos. Univ., 1998, 2nd ed.

    Google Scholar 

  8. Dmitriev, A.S., Panas, A.I., and Starkov, S.O., Dynamic Chaos as a Paradigm of the Modern Communication Systems, Zarub. Radioelektron., 1997, no. 10, pp. 4–26.

  9. Dmitriev, A.S. and Kuz’min, L.V., Information Transmission Using a Synchronous Chaotic Response with Filtering in the Communication Channel, Pis’ma Zh. Tekh. Fiz., 1999, vol. 25, no. 8, pp. 71–77.

    Google Scholar 

  10. Napartovich, A.P. and Sukharev, A.G., Decoding of Information in a System with a Chaotic Laser Controlled by a Chaotic Signal, Kvantov. Elektron., 1998, vol. 25, no. 1, pp. 85–88.

    Google Scholar 

  11. Andrievsky, B.R., Blekhman, I.I., Bortsov, Yu.A., et al., Upravlenie mekhatronnymi vibratsionnymi ustanovkami (Control of Mechanotronic Vibrational Units), Blekhman, I.I. and Fradkov, A.L., Eds., St. Petersburg: Nauka, 2001.

    Google Scholar 

  12. Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control of Dynamical Systems), Moscow: Nauka, 1981.

    MATH  Google Scholar 

  13. Fradkov, A.L., Adaptivnoe upravlenie v slozhnykh sistemakh (Adaptive Control in Complex Systems), Moscow: Nauka, 1990.

    MATH  Google Scholar 

  14. Fradkov, A.L., Cybernetical Physics: From Control of Chaos to Quantum Control, New York: Springer, 2007.

    MATH  Google Scholar 

  15. Shalfeev, V.D., Osipov, G.V., Kozlov, A.K., and Volkovskii, A.R., Chaotic Oscillations: Generation, Synchronization, Control, Zarub. Radioelektron., Usp. Sovr. Radioelektron., 1997, no. 10, pp. 27–49.

  16. Shimanskii, V.E., Communication System with Chaotic Carrier Based on the ADSP-2181 Digital Signal Processor, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 1998, vol. 6, no. 5, pp. 66–75.

    Google Scholar 

  17. Abel, A. and Schwarz, W., Chaos Communication-Principles, Schemes, and System Analysis, Proc. IEEE, 2002, vol. 90, no. 5, pp. 691–710.

    Article  Google Scholar 

  18. Alvarez-Ramirez, J., Puebla, H., and Cervantes, I., Stability of Observer-based Chaotic Communications for a Class of Lur’e Systems, Int. J. Bifurcat. Chaos, 2002, vol. 12, no. 7, pp. 1605–1618.

    Article  Google Scholar 

  19. Andrievsky, B.R., Information Transmission by Adaptive Identification with Chaotic Carrier, Proc. 2nd International Conf. “Control of Oscillations and Chaos (COC 2000),” St. Petersburg, 2000, vol. 1, pp. 115–117.

    Article  Google Scholar 

  20. Andrievsky, B.R., Adaptive SynchronizationMethods for Signal Transmission on Chaotic Carriers, Math. Comput. Simulat., 2002, vol. 58, nos. 4–6, pp. 285–293.

    Article  MathSciNet  MATH  Google Scholar 

  21. Andrievsky, B.R. and Fradkov, A.L., Information Transmission by Adaptive Synchronization with Chaotic Carrier and Noisy Channel, Proc. 39th IEEE Conf. Decisions and Control, Sydney, December 12–15, 2000, pp. 1025–1030.

  22. Andrievsky, B.R. and Fradkov A.L., Information Transmission by Means of Chaos-based Frequency Modulation and Adaptive Identification, Proc. 2007 IEEE Multi-conference on Systems and Control, Singapore, October 1–3, 2007.

  23. Blekhman, I.I., Fradkov, A.L., Nijmeijer, H., and Pogromsky, A.Y., On Self-synchronization and Controlled Synchronization, Syst. Control Lett., 1997, vol. 31, pp. 299–305.

    Article  MathSciNet  MATH  Google Scholar 

  24. Brown, R., and Chua, L.O., Clarifying Chaos III: Chaotic and Stochastic Processes, Chaotic Resonance and Number Theory, Int. J. Bifurcat. Chaos, 1999, no. 9(5), pp. 785–803.

    Google Scholar 

  25. Chen, G. and Dong, X., From Chaos to Order: Perspectives, Methodologies and Applications, Singapore: World Scientific, 1998.

    Book  Google Scholar 

  26. Cuomo, K.M., Oppenheim, A.V., and Strogatz, S.H., Synchronization of Lorenz-based Chaotic Circuits with Application to Communications, IEEE Trans. Circ. Syst., 1993, vol. 40, no. 10, pp. 626–633.

    Article  Google Scholar 

  27. Cuomo, K.M. and Oppenheim, A.V., Circuit Implementation of Synchronized Chaos with Applications to Communications, Phys. Rew. Lett., 1993, vol. 71, no. 1, pp. 65–68.

    Article  Google Scholar 

  28. Demircioğlu, H. and Yavuzyilmaz, C IEEE Control Syst. Mag., 2002, vol. 22, no. 4, pp. 57–67.

    Article  Google Scholar 

  29. Fradkov, A.L. and Andrievsky, B.R., Adaptive Robustified Synchronization Methods for Chaos-based Information Transmission, Proc. 1st IEEE Int. Conf. Circ. Syst. for Communic., St. Petersburg, 2002, pp. 275–280.

  30. Fradkov, A.L., Nijmeijer, H., and Markov, A.Yu., Adaptive Observer-based Synchronization for Communication, Int. J. Bifurcat. Chaos, 2000, vol. 10, no. 12, pp. 2807–2813.

    Article  MATH  Google Scholar 

  31. Fradkov, A.L., Nikiforov, V.O., and Andrievsky, B.R., Adaptive Observers for Nonlinear Nonpassifiable Systems with Application to Signal Transmission, Proc. 41st IEEE Conf. Dec. Control (CDC’02), USA, 2002, pp. 4704–4711.

  32. Fradkov, A.L. and Pogromsky, A.Y., Introduction to Control of Oscillations and Chaos, Singapore: World Scientific, 1998.

    Book  MATH  Google Scholar 

  33. Gawthrop, P.J., Continuous-Time Self-Tuning Control, Letchworth: Research Studies Press, 1987, vol. 1.

    MATH  Google Scholar 

  34. Hasler, M. and Schimming, Th., Chaos Communication over Noisy Channels, Int. J. Bifurc. Chaos, 2000, vol. 10, no. 4, pp. 719–735.

    Article  MathSciNet  MATH  Google Scholar 

  35. Kolumban, G., Kennedy, M.P., and Chua, L.O., The Role of Synchronization in Digital Communications Using Chaos. Part I: Fundamentals of Digital Communications, IEEE Trans. Circ. Syst., 1997, vol. 44, no. 10, pp. 927–936; Part II: Chaotic Modulation and Chaotic Synchronization, IEEE Trans. Circ. Syst., 1998, vol. 45, no. 11, pp. 1129–1140.

    Article  MathSciNet  Google Scholar 

  36. Lion, P.M., Rapid Identification of Linear and Nonlinear Systems, AIAA J., 1967, vol. 5, pp. 1835–1842.

    Article  Google Scholar 

  37. Markov, A.Yu. and Fradkov, A.L., Adaptive Synchronization of Chaotic Systems Based on Speed Gradient Method and Passification, IEEE Trans. Circ. Syst., 1997, no. 11, pp. 905–912.

  38. Peterson, R.L., Ziemer, R.E., and Borth, D.E., Introduction to Spread-Spectrum Communications, New Jersey: Prentice Hall, 1995.

    Google Scholar 

  39. Torres, W.P., Oppenheim, A.V., and Rosales, R.R., Generalized Frequency Modulation, IEEE Trans. Circ. Syst., 2001, vol. 48, no. 12, pp. 1405–1412.

    Article  MathSciNet  MATH  Google Scholar 

  40. Special issue “Chaos Control and Synchronization,” IEEE Trans. Circ. Syst., Kennedy, M. and Ogorzalek, M., Eds., 1977, vol. 44, no. 10.

  41. Special issue on Applications of Chaos in Modern Communication Systems, IEEE Trans. Circ. Syst., Kocarev, L., Maggio, G.M., Ogorzalek, M., et al., Eds., 2001. vol. 48, no. 12.

  42. Iñarrea, M. and Lanchares, V., Chaos in the Reorientation Process of a Dual-spin Spacecraft with Time-dependent Moments of Inertia, Int. J. Bifurc. Chaos, 2000, vol. 10, no. 5, pp. 997–1018.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.R. Andrievsky, A.L. Fradkov, 2009, published in Upravlenie Bol’shimi Sistemami, 2009, No. 23, pp. 56–80.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrievsky, B.R., Fradkov, A.L. Adaptive-based methods for information transmission by means of chaotic signal source modulation. Autom Remote Control 72, 1967–1980 (2011). https://doi.org/10.1134/S0005117911090177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117911090177

Keywords

Navigation