Skip to main content
Log in

Input to state stability and allied system properties

  • Reviews
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The main results obtained in the field of input-state stable systems and systems with other similar characteristics that were published over the last two decades were reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kokotović, P. and Arcak, M., Constructive Nonlinear Control: A Historical Perspective, Automatica J. IFAC, 2001, no. 37(5), pp. 637–662.

  2. Sontag, E.D., Input to State Stability: Basic Concepts and Results, in Nonlinear and Optimal Control Theory, vol. 1932 of Lecture Notes in Math., Berlin: Springer, 2008, pp. 163–220.

    Chapter  Google Scholar 

  3. Sontag, E.D., The ISS Philosophy as a Unifying Framework for Stability-like Behavior, in Nonlinear Control in the Year 2000, vol. 259 of Lecture Notes in Control and Inform. Sci., London: Springer, 2001, pp. 443–467.

    Chapter  Google Scholar 

  4. Doyle, J., Francis, B., and Tannenbaum, A., Feedback Control Systems, New York: MacMillan, 1992.

    Google Scholar 

  5. Khalil, Kh.K., Nelineinye sistemy (Nonlinear Systems), Moscow: RKHD, 2009.

    Google Scholar 

  6. Sontag, E.D., Comments on Integral Variants of ISS, Syst. Control Lett., 1998, no. 34(1–2), pp. 93–100.

  7. Natanson, I.P., Teoriya funktsii veshchestvennoi peremennoi (Theory of Functions of Real Variable), St. Petersburg: Lan’, 1999.

    Google Scholar 

  8. Sontag, E.D., Smooth Stabilization Implies Coprime Factorization, IEEE Trans. Automat. Control, 1989, no. 34(4), pp. 435–443.

  9. Dashkovskiy, S., Rüffer, B.S., and Wirth, F.R., Small Gain Theorems for Large Scale Systems and Construction of ISS Lyapunov Functions, 2009, accepted in SIAM J. Control and Optimization, available electronically: http://arxiv.org/pdf/0901.1842.

  10. Sontag, E.D. and Wang, Y., New Characterizations of Input-to-State Stability, IEEE Trans. Automat. Control, 1996, no. 41(9), pp. 1283–1294.

    Google Scholar 

  11. Sontag, E.D., Further Facts about Input to State Stabilization, IEEE Trans. Automat. Control, 1990, no. 35(4), pp. 473–476.

    Google Scholar 

  12. Sontag, E.D. and Wang, Y., On Characterizations of the Input-to-State Stability Property, Syst. Control Lett., 1995, no. 24(5), pp. 351–359.

  13. Teel, A.R., Connections between Razumikhin-type Theorems and the ISS Nonlinear Small Gain Theorem, IEEE Trans. Automat. Control, 1998, no. 43(7), pp. 960–964.

    Google Scholar 

  14. Karafyllis, I. and Jiang, Z.-P., A Small-gain Theorem for a Wide Class of Feedback Systems with Control Applications, SIAM J. Control Optim., 2007, no. 46(4), pp. 1483–1517.

    Google Scholar 

  15. Pepe, P., Karafyllis, I., and Jiang, Z.-P., On the Liapunov-Krasovskii Methodology for the ISS of Systems Described by Coupled Delay Differential and Difference Equations, Automatica J. IFAC, 2008, no. 44(9), pp. 2266–2273.

    Google Scholar 

  16. Lyapunov, A.M., Obshchaya zadacha ob ustoichivosti dvizheniya (General Problem of Motion Stability), Khar’kov: Khar’kov. Mat. Obshch., 1892.

    Google Scholar 

  17. Polushin, I.G., Fradkov, A.L., and Hill, D.J., Passivity and Passification of Nonlinear Systems, Autom. Remote Control, 2000, no. 3, pp. 355–388.

  18. Willems, J.C., Dissipative Dynamical Systems. Part I: General Theory, Arch. Rational Mechanics Anal., 1972, no. 45, pp. 321–351.

  19. Grüne, L., Input-to-State Dynamical Stability and Its Lyapunov Function Characterization, IEEE Trans. Automat. Control, 2002, no. 47(9), pp. 1499–1504.

    Google Scholar 

  20. Praly, L. and Wang, Y., Stabilization in Spite of Matched Unmodeled Dynamics and an Equivalent Definition of Input-to-State Stability, Math. Control Signals Syst., 1996, no. 9(1), pp. 1–33.

  21. Sontag, E.D. and Teel, A., Changing Supply Functions in Input/State Stable Systems, IEEE Trans. Automat. Control, 1995, no. 40(8), pp. 1476–1478.

    Google Scholar 

  22. Malisoff, M., Rifford, L., and Sontag, E.D., Global Asymptotic Controllability Implies Input-to-State Stabilization, SIAM J. Control Optim., 2004, no. 42(6), pp. 2221–2238.

    Google Scholar 

  23. Angeli, D., Sontag, E.D., and Wang, Y., A Characterization of Integral Input-to-State Stability, IEEE Trans. Automat. Control, 2000, no. 45(6), pp. 1082–1097.

    Google Scholar 

  24. Byrnes, C.I., Isidori, A., and Willems, J.C., Passivity, Feedback Equivalence, and the Global Stabilization of Minimum Phase Nonlinear Systems, IEEE Trans. Automat. Control, 1991, no. 36(11), pp. 1228–1240.

    Google Scholar 

  25. Liberzon, D., Sontag, E.D., and Wang, Y., On Integral Input to State Stabilization, Proc. Am. Control Conf., San Diego, June 1999, pp. 1598–1602.

  26. Angeli, D., Sontag, E.D., and Wang, Y., Further Equivalences and Semiglobal Versions of Integral Input to State Stability, Dynam. Control, 2000, no. 10(2), pp. 127–149.

    Google Scholar 

  27. Grüne, L., Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization, Lecture Notes Math., Berlin: Springer, 2002, vol. 1783.

    MATH  Google Scholar 

  28. Sepulchre, R., Janković, M., and Kokotović, P.V., Constructive Nonlinear Control, Berlin: Springer, 1997.

    MATH  Google Scholar 

  29. Sontag, E.D. and Wang, Y., Output-to-State Stability and Detectability of Nonlinear Systems, Syst. Control Lett., 1997, no. 29(5), pp. 279–290.

  30. Polushin, I.G., On the Output Feedback Robust Stabilization of Passive Nonlinear Systems, Proc. 39th IEEE Conf. Decision Control, Sydney, December 2000, pp. 2934–2935.

  31. Isidori, A., Nonlinear Control Systems, Berlin: Springer, 1995.

    MATH  Google Scholar 

  32. Liberzon, D., Morse, A.S., and Sontag, E.D., Output-Input Stability and Minimum-Phase Nonlinear Systems, IEEE Trans. Automat. Control, 2002, no. 47(3), pp. 422–436.

    Google Scholar 

  33. Sontag, E.D. and Wang, Y., A Notion of Input to Output Stability, Proc. Eur. Control Conf., Brussels, July 1997, CD-ROM file ECC958.pdf.

  34. Hespanha, J.P., Liberzon, D., Angeli, D., and Sontag, E.D., Nonlinear Norm-observability Notions and Stability of Switched Systems, IEEE Trans. Automat. Control, 2005, no. 50(2), pp. 154–168.

    Google Scholar 

  35. Krichman, M., Sontag, E.D., and Wang, Y., Input-Output-to-State Stability, SIAM J. Control Optim., 2001, no. 39(6), pp. 1874–1928.

    Google Scholar 

  36. Sontag, E.D. and Wang, Y., Notions of Input to Output Stability, Syst. Control Lett., 1999, no. 38(4–5), pp. 235–248.

  37. Sontag, E.D. and Wang, Y., Lyapunov Characterizations of Input to Output Stability, SIAM J. Control Optim., 2000, no. 39(1), pp. 226–249.

  38. Ingalls, B. and Wang, Y., On Input-to-Output Stability for Systems not Uniformly Bounded, Proc. NOLCOS’01, St. Petersburg, July 2001.

  39. Angeli, D., Ingalls, B., Sontag, E.D., and Wang, Y., Separation Principles for Input-Output and Integral-Input-to-State Stability, SIAM J. Control Optim., 2004, no. 43(1), pp. 256–276.

    Google Scholar 

  40. Lin, Y.D., Sontag, E.D., and Wang, Y., Input to State Stabilizability for Parametrized Families of Systems, Int. J. Robust Nonlinear Control, 1995, no. 5(3), pp. 187–205.

    Google Scholar 

  41. Sontag, E.D. and Wang, Y., Various Results Concerning Set Input-to-State Stability, Proc. 34th IEEE Conf. Decision and Control, New Orleans, December 1995, pp. 1330–1335

  42. Sontag, E.D. and Wang, Y., On Characterizations of Input-to-State Stability with Respect to Compact Sets, Proc. IFAC NOLCOS’95, Tahoe City, September 1995, pp. 226–231.

  43. Jiang, Z.-P., Teel, A.R., and Praly, L., Small-gain Theorem for ISS Systems and Applications, Math. Control Signals Syst., 1994, no. 7(2), pp. 95–120.

  44. Sontag, E.D. and Lin, Y., Stabilization with Respect to Noncompact Sets: Lyapunov Characterization and Effect of Bounded Inputs, Proc. NOLCOS’92, Bordeaux, 1992.

  45. Efimov, D.V. and Fradkov, A.L., Input-to-Output Stabilization of Nonlinear Systems via Backstepping, Int. J. Robust Nonlinear Control, 2009, no. 19(6), pp. 613–633.

  46. Jiang, Z.-P., Mareels, I.M.Y., and Wang, Y., A Lyapunov Formulation of the Nonlinear Small-Gain Theorem for Interconnected ISS Systems, Automatica J. IFAC, 1996, no. 32(8), pp. 1211–1215.

    Google Scholar 

  47. Ito, H., State-dependent Scaling Problems and Stability of Interconnected iISS and ISS Systems, IEEE Trans. Automat. Control, 2006, no. 51(10), pp. 1626–1643.

    Google Scholar 

  48. Dashkovskiy, S., Rüffer, B.S., and Wirth, F.R., An ISS Small Gain Theorem for General Networks, Math. Control Signals Syst., 2007, no. 19(2), pp. 93–122.

  49. Rüffer, B.S., Monotone Inequalities, Dynamical Systems, and Paths in the Positive Orthant of Euclidean N-space, Positivity, 2009, DOI:10.1007/s11117-009-0016-5.

  50. Dashkovskiy, S., Rüffer, B.S., and Wirth, F.R., Applications of the General Lyapunov ISS Small-gain Theorem for Networks, Proc. 47th IEEE Conf. Decision Control, 2008, pp. 25–30.

  51. Dashkovskiy, S. and Rüffer, B., Local ISS of Large-scale Interconnections and Estimates for Stability Regions, Syst. Control Lett., no. 59(3–4), pp. 241–247.

  52. Arcak, M. and Teel, A., Input-to-State Stability for a Class of Lurie Systems, Automatica J. IFAC, 2002, no. 38(11), pp. 1945–1949.

  53. Voronov, A.A., Ustoichivost’, upravlyaemost’, nablyudaemost’ (Stability, Controllability, Observability), Moscow: Nauka, 1979.

    Google Scholar 

  54. Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya. Uch. Posob. (Textbook on Automatic Control Theory), Moscow: Nauka, 1986.

    Google Scholar 

  55. Tsypkin, Ya.Z., Osnovy teorii avtomaticheskikh sistem (Fundamentals of the Theory of Automatic Systems), Moscow: Nauka, 1977. Translated under the title Grundlagen der Theorie automatischer Systeme, Berlin: VEB Verlag Technik, 1981.

    Google Scholar 

  56. Efimov, D.V., Robastnoe i adaptivnoe upravlenie nelineinymi kolebaniyami (Robust and Adaptive Control of Nonlinear Oscillations), St. Petersburg: Nauka, 2005.

    Google Scholar 

  57. Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami. Analiz i sintez nelineinykh sistem (Nonlinear and Adaptive Control of Complex Dynamic Systems. Analysis and Design of Nonlinear Systems), St. Petersburg: Nauka, 2000.

    Google Scholar 

  58. Efimov, D.V., Passivity and Input-to-State Stability of Nonlinear Systems, Proc. 5th IFAC Sympos. on Robust Control Design, Toulouse, July 2006.

  59. Krstic, M., Kanellakopoulos, I., and Kokotovic, P.V., Nonlinear and Adaptive Control Design, New York: Wiley, 1995.

    Google Scholar 

  60. Kolesnikov, A.A., Sinergeticheskaya teoriya upravleniya (Synergistic Control Theory), Moscow: Energoatomizdat, 1994.

    Google Scholar 

  61. Druzhinina, M.V., Nikiforov, V.O., and Fradkov, A.L., Adaptive Output Control Methods for Nonlinear Objects, Autom. Remote Control, 1996, no. 2, pp. 153–176.

  62. Efimov, D.V. and Fradkov, A.L., Adaptive Input-to-Output Stabilization of Nonlinear Systems, Int. J. Adaptive Control Signal Process., 2008, no. 22(10), pp. 949–967.

  63. Artstein, Z., Stabilization with Relaxed Controls, Nonlinear Anal., 1983, no. 7(11), pp. 1163–1173.

  64. Sontag, E.D., A “Universal” Construction of Artstein’s Theorem on Nonlinear Stabilization, Syst. Control Lett., 1989, no. 13(2), pp. 117–123.

  65. Teel, A. and Praly, L., On Assigning the Derivative Of Disturbance Attenuation CLF, Proc. 37th IEEE CDC, Tampa, Florida, December 1998, pp 2497–2502.

  66. Efimov, D.V., A Condition of CLF Existence for Affine Systems, Proc. 41st IEEE Conf. Decision Control, Las Vegas, 2002, pp. 1882–1887.

  67. Efimov, D.V., Universal Formula for Output Asymptotic Stabilization, Proc. 15th IFAC World Congress 2002, T-We-M 07 4, Barselona, July 2002.

  68. Krstić, M. and Li, Z.-H., Inverse Optimal Design of Input-to-State Stabilizing Nonlinear Controllers, IEEE Trans. Automat. Control, 1998, no. 43(3), pp. 336–350.

    Google Scholar 

  69. Liberzon, D., Sontag, E.D., and Wang, Y., Universal Construction of Feedback Laws Achieving ISS and Integral-ISS Disturbance Attenuation, Syst. Control Lett., 2002, no. 46(2), pp. 111–127.

  70. Alessandri, A., Observer Design for Nonlinear Systems by Using Input-to-State Stability, Proc. 43rd IEEE Conf. Decision Control, Bahamas, 2004, pp. 3892–3897.

  71. Barbashin, E.A. and Krasovskii, N.N., On Existence of the Lyapunov Function in the Case of Asymptotic Stability as a Whole, Prikl. Mat. Mekh., 1954, vol. 18, pp. 345–350.

    MATH  Google Scholar 

  72. Chaplygin, S.A., Novyi metod priblizhennogo integrirovaniya differentsial’nykh uravnenii (A New Method of Approximate Integration of Differential Equations), Moscow: Gostekhizdat, 1948.

    Google Scholar 

  73. Lakshmikantham, V., Matrosov, V.M., and Sivasundaram, S., Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, vol. 63, Math. Appl., Dordrecht: Kluwer, 1991.

    Google Scholar 

  74. Leonov, G.A., Families of Transversal Curves for Two-dimensional Controls of Differential Equations, Vestn. S.-Peterburg. Gos. Univ., Ser. 1, 2006, vol. 4, pp. 48–78.

    Google Scholar 

  75. Angeli, D. and Sontag, E.D., Forward Completeness, Unboundedness Observability, and Their Lyapunov Characterizations, Syst. Control Lett., 1999, no. 38(4–5), pp. 209–217.

  76. Lin, Y., Sontag, E.D., and Wang, Y., A Smooth Converse Lyapunov Theorem for Robust Stability, SIAM J. Control Optim., 1996, no. 34(1), pp. 124–160.

    Google Scholar 

  77. Vorotnikov, V.I. and Rumyantsev, V.V., Ustoichivost’ i upravlenie po chasti koordinat fazovogo vektora dinamicheskikh sistem: teoriya, metody i prilozheniya (Stability and Control in Part of Coordinates of the Vector of Dynamic Systems: Theory, Methods, and Applications), Moscow: Nauchnyi Mir, 2001.

    Google Scholar 

  78. Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym polozheniem ravnovesiya (Stability of Nonlinear Systems with Nonunique Equilibrium), Moscow: Nauka, 1978.

    Google Scholar 

  79. Rumyantsev, V.V. and Oziraner, A.S., Ustoichivost’ i stabilizatsiya dvizhenii po otnosheniyu k chasti peremennykh (Sability and Stabilization of Motions in Part of Variables), Moscow: Nauka, 1987.

    Google Scholar 

  80. Leonov, G.A., Burkin, I.M., and Shepeljavyi, A.I., Frequency Methods in Oscillation Theory, vol. 357, Math. Appl., Dordrecht: Kluwer, 1996. Translated from the 1992 Russian original and revised by the authors.

    Google Scholar 

  81. Hill, D.J. and Moylan, C.J., Dissipative Dynamical Systems: Basic Input-Output and State Properties, J. Franklin Inst., 1980, no. 309(5), pp. 327–357.

  82. Cai, C. and Teel, A.R., Results on Input-to-State Stability for Hybrid Systems, Proc. 44th IEEE Conf. Decision Control, and the European Control Conference, Seville, 2005, pp. 5403–5408.

  83. Cai, C. and Teel, A.R., Characterizations of Input-to-State Stability for Hybrid Systems, Syst. Control Lett., 2009, no. 58(1), pp. 47–53.

  84. Brockett, R.W. and Liberzon, D., Quantized Feedback Stabilization of Linear Systems, IEEE Trans. Automat. Control, 2000, no. 45(7), pp. 1279–1289.

    Google Scholar 

  85. Hespanha, J.P., Liberzon, D., and Morse, A.S., Supervision of Integral-Input-to-State Stabilizing Controllers, Automatica J. IFAC, 2002, no. 38(8), pp. 1327–1335.

  86. Liberzon, D., Switching in Systems and Control, in Systems & Control: Foundations & Applications, Boston: Birkhäuser Boston, 2003.

    Google Scholar 

  87. Mancilla-Aguilar, J.L. and García, R.A., On Converse Lyapunov Theorems for ISS and iISS Switched Nonlinear Systems, Syst. Control Lett., 2001, no. 42(1), pp. 47–53.

  88. Vu, L., Chatterjee, D., and Liberzon, D., Input-to-State Stability of Switched Systems and Switching Adaptive Control, Automatica J. IFAC, 2007, no. 43(4), pp. 639–646.

    Google Scholar 

  89. Xie, W., Wen, C., and Li, Z., Input-to-State Stabilization of Switched Nonlinear Systems, IEEE Trans. Automat. Control, 2001, no. 46(7), pp. 1111–1116.

    Google Scholar 

  90. Angeli, D., Sontag, E.D., and Wang, Y., Input-to-State Stability with Respect to Inputs and Their Derivatives, Int. J. Robust Nonlinear Control, 2003, no. 13(11), pp. 1035–1056.

  91. Tsinias, J. and Karafyllis, I., ISS Property for Time-Varying Systems and Application to Partial-Static Feedback Stabilization and Asymptotic Tracking, IEEE Trans. Automat. Control, 1999, no. 44(11), pp. 2179–2184.

    Google Scholar 

  92. Malisoff, M. and Mazenc, F., Further Remarks on Strict Input-to-State Stable Lyapunov Functions for Time-varying Systems, Automatica J. IFAC, 2005, no. 41(11), pp. 1973–1978.

    Google Scholar 

  93. Kazakos, D. and Tsinias, J., The Input to State Stability Condition and Global Stabilization of Discrete-time Systems, IEEE Trans. Automat. Control, 1994, no. 39(10), pp. 2111–2113.

    Google Scholar 

  94. Jiang, Z.-P. and Wang, Y., Input-to-State Stability for Discrete-Time Nonlinear Systems, Automatica J. IFAC, 2001, no. 37(6), pp. 857–869.

  95. Jiang, Z.-P. and Wang, Y., A Converse Lyapunov Theorem for Discrete-time Systems with Disturbances, Syst. Control Lett., 2002, no. 45(1), pp. 49–58.

  96. Loria, A. and Nesic, D., Stability of Time-varying Discrete-time Cascades, Proc. 15th IFAC World Congress, Barcelona, June 2002.

  97. Angeli, D., Intrinsic Robustness of Global Asymptotic Stability, Syst. Control Lett., 1999, no. 38(4–5), pp. 297–307.

  98. Tsinias, J., Stochastic Input-to-State Stability and Applications to Global Feedback Stabilization, Int. J. Control, 1998, no. 71(5), pp. 907–930.

    Google Scholar 

  99. Deng, H. and Krstić, M., Output-feedback Stabilization of Stochastic Nonlinear Systems Driven by Noise of Unknown Covariance, Syst. Control Lett., 2000, no. 39(3), pp. 173–182.

  100. Deng, H., Krstić, M., and Williams, R.J., Stabilization of Stochastic Nonlinear Systems Driven by Noise of Unknown Covariance, IEEE Trans. Automat. Control, 2001, no. 46(8), pp. 1237–1253.

    Google Scholar 

  101. Rantzer, A., A Dual to Lyapunov’s Stability Theorem, Syst. Control Lett., 2001, no. 42(3), pp. 161–168.

  102. Angeli, D., An Almost Global Notion of Input-to-State Stability, IEEE Trans. Automat. Control, 2004, no. 49(6), pp. 866–874.

    Google Scholar 

  103. Christofides, P.D. and Teel, A.R., Singular Perturbations and Input-to-State Stability, IEEE Trans. Automat. Control, 1996, no. 41(11), pp. 1645–1650.

    Google Scholar 

  104. Nešić, D. and Teel, A.R., Input-to-State Stability for Nonlinear Time-varying Systems via Averaging, Math. Control Signals Syst., 2001, no. 14(3), pp. 257–280.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.N. Dashkovskiy, D.V. Efimov, E.D. Sontag, 2011, published in Avtomatika i Telemekhanika, 2011, No. 8, pp. 3–40.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dashkovskiy, S.N., Efimov, D.V. & Sontag, E.D. Input to state stability and allied system properties. Autom Remote Control 72, 1579–1614 (2011). https://doi.org/10.1134/S0005117911080017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117911080017

Keywords

Navigation